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About me

e Professor at Cardiff University (Wales, UK)
o  UKRI Future Leaders Fellow

o Founder of the Cardiff NLP group

® |[nterested in NLP and computational social science

® Areas of “expertise”: semantics, resources, multilinguality, social media
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> Social media:
o NLP tasks, specialised models
> Temporal challenges:

o Mismatch between LM training data and test
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Motivation

Language models may not know about recent topics of
conversation or events.

This can cause a temporal mismatch between training and
test data.

There are existing solutions, but not for when analyzing
real-time data at scale is required (e.g., social media).
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~ Why NLP research in social media matters

Massive real-world data
Understanding public opinion

Detecting harmful content

Y V VYV YV

Crisis response and public health
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Tweet Insights

(Loureiro et al. 2023)

Type a term to get its related topics on twitter
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https://tweetnlp.org/insights/
https://tweetnlp.org/insights/

e Measuring social biases over time ==

(Zhou et al. EMNLP 2024)
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Social media: Why LLMs may not
(always) be the best solution

Need for efficient solutions (real-time monitoring, large volume)
Lack of context
Sensitive/private data

Specialized and fine-tuned models often work better for simple
or classification problems (Edwards and Camacho-Collados
2024, Bucher and Martini, 2024)



Specializing a LM
on social media
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LLM fine-tuning (social media
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LLM fine-tuning (social media
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NLP tasks on social media
(some examples)



Sentiment analysis
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Sentiment analysis

One of the most popular tasks on social media.

Deciding whether a post is positive, negative or
neutral (+variations)

Indicator of public opinion.




Hate speech detection

HATE SPEECH
DETECTION
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Hate speech detection

An important task consisting on identifying hateful
content on social media.

Usually framed as classification (hateful/not-hateful),
including potential target groups.

Mostly needed in (almost) real-time.
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& Challenges
in hate speech detection

In addition to those specific to social media, some challenges:

> Limited resources (not diverse enough, generalisation issues)
> Culturally specific, not a global definition (inherently subjective)

> Language and style variations (temporal?)
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Topic classification

Classify each tweet by topic domain.

Based on a taxonomy of 19 topics specially tailored to social
media (Antypas et al. 2022):

7/

% Apple Removed More Than 30,000 Apps From The Chinese App
Store: business - news & society - science & technology

s #copreps Football: End of the line for FLHS season: sports & games

21
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& Topic Classification: Multilingual &

(Antypas et al. EMNLP 2024)

‘I don’t think | really want to go to Coachella unless Taylor Swift is
headlining . Celebrity & Pop Culture,

‘quiero una date en un museo . : , Diaries &
Daily Life

RLNZG—AELGEWTOWANZHEH DD T KYEFFHMHREE AZF
& 24 Diaries & Daily Life, Gaming

‘Mrra o€ KaAo oou uwpn AvBoula uag kowoxoAliaoes TaAl “ocaouog: Film,
TV & Video

22
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~ Named Entity Recognition (NER) ©°

Classical NLP task to identify entities in text.

) Tweet

BBC News (World) @BBCWorld
Why Johnny Depp lost in the UK but won in the US https://t.co/X5xheiDw2C

Output NER: Why Johnny Depp lost in the UK but
won in the US https://t.co/X5xheiDw2C

24



& NER and Topic Classification

(Antypas et al. COLING 2022; Ushio et al. AACL 2022)

Two datasets with temporal splits (i.e. training and test sets from
different time periods):

> TweetNER7 (Ushio et al. 2022) for NER
> TweetTopic (Antypas et al. 2022) for topic classification

25



& NER and Topic Classification

(Antypas et al. COLING 2022; Ushio et al. AACL 2022)

Two datasets with temporal splits (i.e. training and test sets from
different time periods):

> TweetNER7 (Ushio et al. 2022) for NER
> TweetTopic (Antypas et al. 2022) for topic classification

Conclusion: Performance on temporal test splits lower than when
dates are shuffled.

26



Temporal challenges

Sources of performance drop can be due to:
O Pre-training data?
o Training data?
o Nature of the domain/task?

o Other?

27



Temporal Generalization of
Language Models
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Why relevant/important?

In social media, many tasks need to be solved in real-time.

However, language models may have been trained in previous time
periods.

Note: Not only the temporal aspect is relevant, but in many cases
domain switches in general can affect results (e.g. hate speech
detection: Yin and Zubiaga, 2021; Antypas and Camacho-Collados,
2023)
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“ Are temporal shifts a problem? ==

Empirically it has been shown that models trained on closer time
periods to the test dataset achieve better performance (e.g.,
evidence from NER and topic classification shown earlier).

However, we lack a comprehensive understanding of why temporal
shifts degrades performance, and what can be done to solve it.

30
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Research questions

CARDIFF
UNIVERSITY

(Ushio and Camacho-Collados, 2024)

.

~
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Are temporal shifts in social media detrimental for LM

\.

performance in NLP tasks?
J

-

(< : .
If so, what are the causes of this temporal shift and can
it be mitigated (by e.g. using LMs pre-trained on recent

~

data)? :

31
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Evaluating temporal shifts

e Out-of-Time (OOT)
- The period of training split is prior

Qut-of-Time (00T)
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to test split. Train Test

\

- Model have no access to the

. . 2018 2020
instances from test period.

In-Time (IT)

e In-Time (IT)

2022
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Pretty close results
for in-time and
out-of-time.

No temporal effect
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Topic classification
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Blue: LMs with
pre-training corpus
including the test
period

Red: LMs without
temporal overlap in.
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Effect of LM pre-training corpus

e BERTweet (B)
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Summary of results

> Main sources of performance drop:
o Pre-training data? Not really*
o Training data? YES
o Nature of the domain/task? YES, entity- or event-driven

particularly affected (e.g. NER, hate speech detection)

* Similar observations in Luu et al. (2022) and Agarwal and Nenkova (2022)
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Temporal challenges: Future work
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& SuperTweetEval benchmark

(Antypas et al. EMNLP Findings 2023)

Unified benchmark with a range of social media NLP
tasks, including regression, generation and classification.

_ Includes tasks with temporal splits!
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& SuperTweetEval benchmark

(Antypas et al. EMNLP Findings 2023)

Unified benchmark with a range of social media NLP
tasks, including regression, generation and classification.

_ Includes tasks with temporal splits!

a LongEval series at CLEF to evaluate performance
consistency over time
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12 diverse
NLP tasks

SuperTweetEval, the benchmark
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Task (Dataset) Example Input Example Output
NER Tweet: Winter solstice 2019 : A short day that ’s long on ancient traditions Winter solstice 2019: event
(TWEETNER7) url via @CNN_Travel @CNN_Travel: product

Emotion Classification
(TWEETEMOTION)

Tweet: Whatever you decide to do make sure it makes you #happy.

joy. love, optimism

Question Generation

Tweet: 5 years in 5 seconds. Darren Booth (@ darbooth) January 25, 2013

what site does the link take you

(TWEETQG) Context: vine 10?
o?
z : i 2 A Tweet: hella excited for ios 15 because siri reads notifications out loud to you [...]
Name Entity Disambiguation B
Target: siri True

(TWEETNERD)

Definition: intelligent personal assistant on various Apple devices

Sentiment Classification
(TWEETSENTIMENT)

Tweet: #ArianaGrande Ari By Ariana Grande 80% Full url #Singer #Actress url

Target: #AranaGrande

negative or neutral

Meaning Shift Detection

Tweet 1: The minute I can walk well I'm going to delta pot

< Tweet 2: Then this new delta vanant out im vaccinated but sulllll likeee’ False
(TEMPOWIC)
Target: dela
Emoji Classification PN st a
(TWEETEMO1100) Tweet: SpiderMAIS back at it y
Intimacy Analysis Tweet: @user SKY scored 4 less runs just lol 1.20

(TWEETINTIMACY)

Question Answering
(TWEETQA)

Tweet: 5 years in 5 seconds. Darren Booth ( @user) January 25, 2013

Question: which measurements of time are mentioned?

years and seconds

Topic Classification
(TweeTTorIC)

Tweet: Sweet, #IOWAvsISU is a nationally televised night game! Nebraska

getting bumped to @FOX_Business is just a bonus.

film_tv_& _video, sports

Hate Speech Detection
(TWEETHATE)

Tweet: Support Black Trans youth url

not_hate

Tweet Similarity
(TWEETSIM)

Tweet 1: I wish kayvee all the best #bbnaija

Tweet 2: Sammie about 1o cry to the housemates all night #bbnaija

233
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12 diverse
NLP tasks

With temporal

splits

SuperTweetEval, the benchmark
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Task (Dataset)

NER
(TWEETNER?7)

Example In:

Example Output

Tweet: Winter solstice 2019 : A short day that ’s long on ancient traditions

url via @CNN_Travel

Winter solstice 2019: event
@CNN_Travel: product

Emotion Classification
(TWEETEMOTION)

Tweet: Whatever you decide to do make sure it makes you #happy.

joy. love, optimism

Question Generation

Tweet: 5 years in 5 seconds. Darren Booth (@ darbooth) January 25, 2013

what site does the link take you

(TWEETQG) Context: vine 10?
o?

[ z : 2 A Tweet: hella excited for ios 15 because siri reads notifications out loud to you [...]

Name Entity Disambiguation Tarpet: siri T

(TWEETNERD) shipgli s : e

\ D on; le devices

Sentiment Classification
(TWEETSENTIMENT)

Tweet: #ArianaGrande Ari By Ariana Grande 80% Full url #Singer #Actress url

Target: #AranaGrande

negative or neutral

Meaning Shift Detection

Tweet 1: The minute I can walk well I'm going to dela

pot

TEMPOWIC Tweet 2: Then this new delta vanant out im vaccinated but sulllll likeee’ False
(TEMPOWIC) R,

Emoji Classification PN st a
(TWEETEMO1100) Tweet: SpiderMAIS back at it y
Intimacy Analysis Tweet: @user SKY scored 4 less runs just lol 1.20

(TWEETINTIMACY)

Question Answering
(TWEETQA)

Tweet: 5 years in 5 seconds. Darren Booth ( @user) January 25, 2013

Question: which measurements of time are mentioned?

years and seconds

Topic Classification
(TweeTTorIC)

Tweet: Sweet, #IOWAvsISU is a nationally televised night game! Nebraska

getting bumped to @FOX_Business is just a bonus.

film_tv_& _video, sports

Hate Speech Detection
(TWEETHATE)

Tweet: Support Black Trans youth url

not_hate

Tweet Similarity
(TWEETSIM)

Tweet 1: I wish kayvee all the best #bbnaija

Tweet 2: Sammie about 1o cry to the housemates all night #bbnaija
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Conclusion

Social media entails many challenges, including immediacy.

Temporal adaptation is needed for some NLP tasks, and can
only be partially solved with updated models.

Annotating recent data is a solution, but comes with costs ->
Automate (part of) the process with LLMs?
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Thank you!

TEMPORAL GENERALISATION
OF LLMs ON SOCIAL MEDIA

-
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