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Distributional semantics based on neural approaches is a cornerstone of Natural Language 
Processing, with surprising connections to human meaning representation as well. Recent 
Transformer-based Language Models have proven capable of producing contextual word 
representations that reliably convey sense-specific information, simply as a product of self-
supervision. Prior work has shown that these contextual representations can be used to 
accurately represent large sense inventories as sense embeddings, to the extent that a 
distance-based solution to Word Sense Disambiguation (WSD) tasks outperforms models 
trained specifically for the task. Still, there remains much to understand on how to use 
these Neural Language Models (NLMs) to produce sense embeddings that can better 
harness each NLM’s meaning representation abilities. In this work we introduce a more 
principled approach to leverage information from all layers of NLMs, informed by a probing 
analysis on 14 NLM variants. We also emphasize the versatility of these sense embeddings 
in contrast to task-specific models, applying them on several sense-related tasks, besides 
WSD, while demonstrating improved performance using our proposed approach over prior 
work focused on sense embeddings. Finally, we discuss unexpected findings regarding layer 
and model performance variations, and potential applications for downstream tasks.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Lexical ambiguity is prevalent across different languages and plays an important role in improving communication ef-
ficiency [87]. Word Sense Disambiguation (WSD) is a long-standing challenge in the field of Natural Language Processing 
(NLP), and Artificial Intelligence more generally, with an extended history of research in computational linguistics [75].

Interestingly, both computational and psychological accounts of meaning representation have converged on high-
dimensional vectors within semantic spaces.

From the computational perspective, there is a rich line of work on learning word embeddings based on statistical 
regularities from unlabeled corpora, following the well-established Distributional Hypothesis [41,35, DH]. The first type of 
distributional word representations relied on count-based methods, initially popularized by LSA [27], and later refined with 
GloVe [82]. Before GloVe, word embeddings learned with neural networks, first introduced by Bengio et al. [7], gained wide 
adoption with word2vec [72] and, afterwards, culminated with fastText [12]. The development and improvement of word 
embeddings has been a major contributor to the progress of NLP in the last decade [38].
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From the psychological perspective, there is also ample behavioral evidence in support of distributional representations 
of word meaning. Similarly to word embeddings, these representations are related according to the degree of shared features 
within semantic spaces, which translates into proximity in vector-space [97,48]. Understandably, the nature of the features 
making up this psychological account of semantic space, among other aspects (e.g., learning method), is not as clear as 
we find in the computational account. Nevertheless, contextual co-occurrence is among the most informative factors for 
meaning representation as well [67,32,91]. There are even use cases in neurobiology motivating research into accurate dis-
tributional representations of word meaning. In Pereira et al. [83], word embeddings have proven useful for decoding words 
and sentences from brain activity, after learning a mapping between corpus-based embeddings (i.e., GloVe and word2vec) 
and fMRI activation.

The current understanding of how humans perform disambiguation attributes major relevance to sentential context, and 
other linguistic and paralinguistic cue’s (e.g., speaker accent) to a lesser extent [97,14]. However, the previously mentioned 
computational approaches are not designed for sense-level representation due to the Meaning Conflation Deficiency [15], 
as they converge different senses into the same word-level representation. Some works have explored variations on the 
word2vec method for sense-level embeddings [99,45,90,65], but the dynamic word-level interactions composing sentential 
context were not targeted by those works.

The works of Melamud et al. [68], Yuan et al. [126], Peters et al. [84] were among the first to propose Neural Language 
Models (NLMs) featuring dynamic word embeddings conditioned on sentential context (i.e., contextual embeddings). These 
works showed that NLMs (trained exclusively on language modeling objectives) can produce contextual embeddings for 
word forms that are sensitive to the word’s usage in particular sentences. Furthermore, these works also addressed WSD 
tasks with a simple nearest neighbors solution (k-NN) based on proximity between contextual embeddings. Their results 
rivaled systems trained specifically for WSD (i.e., with additional modeling objectives), highlighting the accuracy of these 
contextual embeddings.

However, it was not until the development of Transformer-based NLMs, namely BERT [29], that contextual embeddings 
from NLMs showed clearly better performance on WSD tasks than previous systems trained specifically for WSD (LMMS, 
Loureiro & Jorge [61]).

In this earlier work, we explored how to further take advantage of the representational power of NLMs through propa-
gation strategies and encoding sense definitions. Besides pushing the state-of-the-art of WSD, in Loureiro & Jorge [61] we 
created sense embeddings for every entry in the Princeton WordNet v3.0 (200k word senses, [34]), so that the semantic 
space being represented is granular and expansive enough to encompass general knowledge domains for various parts-
of-speech of the English language. With this fully populated semantic space at our disposal we suggested strategies for 
uncovering biases and world knowledge represented by NLMs.

Since our work on LMMS, others have shown additional performance gains for WSD with fine-tuning or classification 
approaches that make better usage of sense definitions [44,11], semantic relations from external resources [104,9], or alto-
gether different approaches to WSD [5].

However, there are several questions still standing regarding how to leverage NLMs for creating accurate and versatile 
sense embeddings, beyond optimizing for WSD benchmarks only. Given that semantic spaces with distributional represen-
tations of word meanings feature prominently in both the conventional computational and psychological accounts of word 
disambiguation, these questions warrant further exploration.

Contributions. In this extension of LMMS, we broaden our scope to more recent Transformer-based models in addition to 
BERT [124,59,52] (14 model variants in total), verify whether they exhibit similar proficiency at sense representation, and 
explore how performance variation can be attributed to particular differences in these models. Striving for a principled 
approach to sense representation with NLMs, we also introduce a new layer pooling method, inspired by recent findings 
of layer specialization [95], which we show is crucial to effectively use these new NLMs for sense representation. Most 
importantly, in this article we provide a general framework for learning sense embeddings with Transformers and perform 
an extensive evaluation of such sense embeddings from different NLMs on various sense-related tasks, emphasizing the 
versatility of these representations.

Outline. This work is organized as follows. We first provide some background information on the main topics of this re-
search: Vector Semantics (§2.1), Neural Language Modeling (§2.2) and Sense Inventories (§2.3). Next, we describe related 
work on Sense Embeddings (§3.1), WSD (§3.2) and Probing NLMs (§3.3).

The method used to produce this work’s sense embeddings is described in Section 4, covering aspects of the method 
introduced in Loureiro & Jorge [61] (from §4.1 to §4.3), as well as our new layer pooling method in Section 4.4.

In Section 5 we describe our experimental setting, providing relevant details about our choice of NLMs (§5.1) and anno-
tated corpora used to learn sense embeddings (§5.2).

The layer pooling methodology described in Section 4.4 requires validating performance under two distinct modes of ap-
plication. Consequently, in Section 6 we report on performance variation per layer across NLMs (§6.1), highlight differences 
between disambiguation and matching profiles (§6.2), and present the rationale for choosing particular profiles for each task 
(§6.3).

In Section 7, we tackle several sense-related tasks using our proposed sense embeddings and compare results against the 
state-of-the-art, namely: WSD (§7.1), Uninformed Sense Matching (§7.2), Word-in-Context (§7.3), Graded Word Similarity in 
Context (§7.4) and Paired Sense Similarity (§7.5).
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In order to better understand the contributions of this work, Section 8 reports on several ablation analyses targeting the 
following: choice of Sense Profiles (§8.1), impact of unambiguous word annotations (§8.2), merging gloss representations 
(§8.3), and indirect representation of synsets (§8.4).

We discuss our findings in Section 9, regarding representations from intermediate layers of NLMs (§9.1), irregularities 
across models and variants (§9.2), and potential downstream applications of our sense embeddings focusing on knowledge 
integration (§9.3).

Finally, in Section 10 we present our concluding remarks, and provide details about our release of sense embeddings, 
code and more.

2. Preliminaries

This work exploits the interaction between vector-based semantic representations (§2.1), recent developments on NLMs 
(§2.2), and curated sense inventories (§2.3). In this section we provide some background on these topics.

2.1. Vector semantics

Nearly a century ago, Firth [36] postulated that “the meaning of a word is always contextual, and no study of meaning 
apart from context can be taken seriously”. Indeed, after working on formal theories of word meaning definition, Wittgen-
stein [121] conceded “the meaning of a word is its use in a language”. This view of meaning representation became known 
as the Distributional Hypothesis (DH) [41], which proposes that words that occur in the same contexts tend to have similar 
meanings. During this period, Osgood et al. [78] further proposed representing the meaning of words as points in multi-
dimensional space, with similar words having similar representations, thus being placed closely in this space. Still, it would 
take a few more decades of computing advancements to appreciate the implications of the DH.

Early VSMs. After some early works introducing vector space models (VSMs) for information retrieval [102,103], Deerwester 
[28,27] was the first to use dense vectors to represent word meaning, initially with a method called Latent Semantic In-
dexing (LSI), and later with Latent Semantic Analysis (LSA). LSA was based on a word-document weighted frequency matrix 
from which the first 300-dimensions resulting from Singular-Value Decomposition (SVD) would correspond to word embed-
dings. Lund & Burgess [64] introduced another influential method similar to LSA, called Hyperspace Analogue to Language 
(HAL) which differed from LSA by considering word-word frequencies instead, introducing the notion of a fixed-sized win-
dow as context (e.g., the two words to the left and to the right) instead full documents, which would become the standard 
representation of context. Following these developments, Landauer & Dumais [53] evaluated the performance of LSA embed-
dings learned from large corpora on a simple semantic task (synonymy tests) and found that these embeddings performed 
comparably to school-aged children, when measuring similarity between word pairs as the cosine similarity between their 
corresponding embeddings (inspired by applications for information retrieval). Already in this early period, Schutze [107]
and Yarowsky [125] realized the potential for WSD applications based on the similarity between unsupervised word embed-
dings. Blei et al. [10] would later introduce Latent Dirichlet Allocation (LDA) which uses a generative probabilistic approach 
to generalize and improve on the approach used for LSA, being widely adopted for topic modeling and other applications 
beyond semantic analysis.

Neural models. Having established that corpus-based word embeddings are able to capture semantic knowledge, additional 
progress followed swiftly. A milestone in the evolution of word embeddings was the discovery that Neural Language Mod-
els (NLMs) implicitly develop word embeddings when training for the task of word prediction [8]. Shortly after, Collobert 
[23–25] demonstrated that word embeddings could be incorporated into neural architectures for various NLP tasks. With 
word2vec, Mikolov et al. [73] distilled the components of NLMs responsible for learning word embeddings into a lightweight 
and scalable solution, allowing this neural-based solution to be employed on corpora of unprecedented size (100B tokens). 
Nevertheless, count-based solutions would still remain important, particularly GloVe [82], as these methods were also sig-
nificantly improved. The next major improvement was the introduction of fastText [12], which was able to represent words 
absent from training data by leveraging subword information, as well as refining several aspects of word2vec’s training 
method.

Sense embeddings. In spite of their success, word2vec, GloVe and fastText conflated different senses of the same word form 
into the same representation, a shortcoming known as the Meaning Conflation Deficiency [15]. While a number of exten-
sions were proposed for the creation of sense-specific representations, such as AutoExtend [99], NASARI [18], DeConf [90] or 
Probabilistic FastText [4], this issue would require the development of a new generation of NLMs in order to be effectively 
addressed.

2.2. Neural language modeling

The first major step towards contextual embeddings from NLMs, was the development of context2vec [68], a single-layer 
bidirectional LSTM trained with the objective of maximizing similarity between hidden states and target word embeddings, 
similarly to word2vec. Peters et al. [84] built upon context2vec with ELMo, a deeper bidirectional LSTM trained with lan-
guage modeling objectives that produce more transferrable representations. Both context2vec and ELMo emphasized WSD 
3
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applications, providing the most convincing accounts until then that sense embeddings can be effectively represented as 
centroids of contextual embeddings, showing 1-NN solutions to WSD tasks that rivaled the performance of task-specific 
models.

With the introduction of highly-scalable Transformer architectures [113], two kinds of very deep NLMs emerged: causal 
(or left-to-right) models, epitomized by the Generative Pre-trained Transformer [13, GPT-3], where the objective is to predict 
the next word given a past sequence of words; and masked models, where the objective is to predict a masked (i.e., hidden) 
word given its surrounding words, of which the most prominent example is the Bidirectional Encoder Representations from 
Transformers (BERT) [29]. The difference in training objectives results in these two varieties of NLMs specializing at different 
tasks, with causal models excelling at language generation and masked models at language understanding.1

BERT proved highly successfully at most NLP tasks [98], and motivated the development of numerous derivative models, 
many of which we also explore in this work. In spite of this progress, Transformer-based NLMs can still show strong reliance 
on surface features [66] and social biases which are hard to correct [127]. There are known theoretical limits to how much 
language understanding can be expected from models trained with language modeling objectives alone [6,69], and it is not 
clear how far current models are from those limits.

2.3. Sense inventories

The currently most popular English word sense inventory is the Princeton WordNet [34] (henceforth, WordNet), a large 
semantic network comprised of general domain concepts curated by experts.2

The core unit of WordNet is the synset, which represents a cognitive concept. Each lemma (word or multi-word expres-
sion) in WordNet belongs to one or more synsets, and word senses amount to the combination of word forms and synsets 
(referred as sensekeys). As a result, the set of words that belong to a synset can be described as synonyms, with some 
words being ambiguous (belonging to additional synsets) while others not (specific to a synset). The predominant seman-
tic relation in WordNet, which relates synset pairs, is hypernymy (i.e., Is-A). Each synset also features a gloss (dictionary 
definition), part-of-speech (noun, verb, adjective or adverb) and lexname,3 which is a syntactic category and logical group-
ing. Synsets are formally represented as numerical codes. Following related works, we also represent them using the more 
readable format lemma#

P O S , where lemma corresponds to synset’s most representative lemma.
As an example, the lemma ‘mouse’ is polysemous belonging to the mouse1

n (rodent) and mouse4
n (computer mouse) 

synsets, among others. The most frequent sense for mouse, mouse%1:05:00:: (sensekey), belongs to the synset mouse1
n

(02330245n) which has an hypernymy relation with rodent1
n , lexname ‘noun.animal’, and gloss “any of numerous small 

rodents typically [...]”.
Following Loureiro & Jorge [61], we use WordNet version 3.0, which contains 117,659 synsets, 206,949 senses, 147,306 

lemmas, and 45 lexnames.

3. Related work

In this section we cover related work on the various well-researched topics that our work intersects, namely Sense 
Embeddings (§3.1), WSD (§3.2) and Probing NLMs (§3.3).

3.1. Sense embeddings

Sense embeddings emerged in NLP due to the so-called meaning conflation deficiency of word embeddings [15]. By 
merging several meanings into a single representation, the single vector proved insufficient in certain settings [123], and 
contradicted common laws in distance metrics, such as the triangle inequality [77]. In order to solve this issue, the field 
of sense vector representation mainly split into two categories: (1) unsupervised, where senses were learned directly from 
text corpora [96,43,118]; (2) or knowledge-based, where senses were linked to a pre-defined sense inventory by exploiting 
an underlying knowledge resource [99,90,65,20].

In this article, we focus on the latter type of representation, particularly leveraging powerful Transformer-based language 
models trained on unlabeled text corpora. As such, the final representation is mainly constructed based on the knowledge 
learned by the language models, and knowledge resources such as WordNet serve to guide the annotation process. The 
goal of this paper is indeed to construct a task-agnostic sense representation that can be leveraged in semantic and textual 
applications. This differs from traditional static sense embeddings which, with a few notable exceptions [56,37,89], were 
mainly leveraged in intrinsic sense-based tasks only. As we show throughout this paper, general-purpose sense representa-
tions learned with the power of Transformers and guided through an underlying lexical resource such as WordNet prove to 
be robust in a range of text-based semantic tasks, as well as in intrinsic sense-based benchmarks.

1 Although recent models like BART [55] show progress towards both.
2 Babelnet [76], Wiktionary [70] and HowNet [31] are popular alternatives covering other languages.
3 Lexnames are also known as supersenses [37,89].
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3.2. Word sense disambiguation

As one of the earliest Artificial Intelligence tasks, WSD has a long history of research. In this work, our coverage of 
related work for WSD is focused on recent systems using Transformer-based architectures for two reasons: our own ex-
periments are also focused on Transformer-based systems; the current state-of-the-art for WSD has converged on these 
systems. Additionally, we also distinguish between solutions addressing WSD from the nearest neighbors paradigm, using 
pre-computed sense embeddings, and task-specific solutions fine-tuning Transformer models or training classifiers using 
their internal representations.

3.2.1. Nearest neighbors
Our prior LMMS work (described throughout this paper) was the first to demonstrate that a nearest neighbors solution 

based on sense embeddings pooled from internal representations of BERT (i.e., feature extraction) could clearly outperform 
the state-of-the-art of the time, which still had not adopted Transformer-based models.

SensEmBERT [104] followed a similar approach to LMMS, but leveraged BabelNet to reduce dependency on annotated 
corpora, producing sense embeddings that performed better on WSD, though limited to nouns only.

With ARES, Scarlini et al. [105] introduce a method to produce a large number of semi-supervised annotations to dramat-
ically increase the coverage of the sense inventory, and demonstrated that sense embeddings learned from those annotations 
can perform substantially better on WSD than LMMS.

SensEmBERT and ARES use the same layer pooling method and gloss embeddings as LMMS, although both have employed 
not only BERT-L, but also its multilingual variant, showing strong performance on languages other than English as well.

In addition to WSD, to our knowledge, the only other task these works have applied their sense embeddings is Word-in-
Context (WiC) [88], which we also address in this work.

3.2.2. Trained classifiers
When it comes to using Transformers to train classifiers specific to the WSD task, we encounter a much more diverse 

set of solutions in comparison to feature extraction approaches.
One of the earliest and most straightforward supervised classifiers for WSD using BERT was the Sense Vocabulary Com-

pression (SVC) of Vial et al. [115], which added layers to BERT, topped with a softmax classifier, to be trained targeting a 
strategically reduced set of admissible candidate senses.

Following outstanding results on a range of text classification tasks by model fine-tuning, GlossBERT [44] fine-tuned 
BERT using glosses so that WSD could be framed as a text classification task pairing glosses to words in context. KnowBERT 
[86] employs a more sophisticated fine-tuning approach, designed to exploit knowledge bases (WordNet and Wikipedia) as 
well as glosses.

Straying further from prototypical classifiers, Blevins & Zettlemoyer [11] (BEM) propose a bi-encoder method which 
learns to represent senses based on glosses while performing the optimization jointly with the underlying BERT model. Tak-
ing advantage of an ensemble of sense embeddings from LMMS and SensEmBERT, along with additional resources, EWISER 
[9] trains a multifaceted high performance WSD classifier.

Finally, the current state-of-the-art for WSD is ConSeC [5], which obtains impressively strong results by framing WSD as 
an extractive task, similar to extractive question answering, trained through fine-tuning BART [55], a sequence-to-sequence 
Transformer which outperforms BERT on reading comprehension tasks (while being of comparable size).

In Loureiro et al. [63] we extensively compared fine-tuning and feature extraction approaches for the WSD task. Con-
sistent with prior work, we found that fine-tuning overall outperforms feature extraction. However, under comparable 
circumstances, the performance gap is narrow and feature extraction shows improved few-shot performance and less fre-
quency bias.

3.3. Probing neural language models

As NLMs became popular, investigating properties of their internal states, or intermediate representations, also became 
an important line of research, often referred to as ‘model probing’. Probing operates under the assumption that if a rela-
tively simple classifier, based exclusively on representations from NLMs, can perform well at some task, then the required 
information was already encoded in the representations. For clarity, we define probes as functions (learned or heuristic) 
designed to reveal some intrinsic property of NLMs. In this section we cover probing works focused on lexical semantics 
and layer-specific variation that inspired our probing analysis. We distinguish these works by their use of probes trained 
using representations (learned), and probes directly comparing or analyzing unaltered representations (heuristics, such as 
nearest neighbors).

3.3.1. Learned probes
Among the most influential findings in this line of research was the discovery by Hewitt & Manning [42] that syntac-

tically valid parse trees could be uncovered from linear transformations of word representations obtained from pre-trained 
ELMo and BERT models. Motivated by this discovery, Reif et al. [95] performed additional experiments focused on sense 
representation, including showing that a nearest neighbors based on BERT representations could outperform the reported 
5
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WSD state-of-the-art, particularly when following Hewitt & Manning [42]’s methodology to learn a probe tailored to sense 
representation. To increase sensitivity to sense-specific information, Reif et al. [95] used a loss that considered the difference 
between the average cosine similarity of embeddings of words with the same senses, and embeddings of words with differ-
ent senses. Both Hewitt & Manning [42] and Reif et al. [95] approaches are designed for probing representations obtained 
from single layers.

With ELMo, Peters et al. [84] introduced contextualized word representations that are obtained from a linear combination 
of representations from all layers of the model. This linear combination uses task-specific weights learned through an 
optimization process, often referred to in the literature as “scalar mixing”, and produced better results in downstream tasks 
when compared to representations obtained from individual layers. On closer inspection, Peters et al. [85] concluded that 
top layers can be less effective for semantic tasks possibly due to specialization for the language modeling tasks optimized 
during pre-training.

Tenney et al. [112] proposed an “edge probing” methodology, using scalar mixing, that allowed for evaluating different 
syntactic or semantic properties using a common classifier architecture, where probing models are trained to predict graph 
edges independently. In Tenney et al. [111], edge probing was employed to reveal that BERT implicitly performed differ-
ent steps of a traditional NLP pipeline, in the expected order as information flows through the model, with lower layers 
processing local syntax (e.g., Part-of-Speech) and higher layers processing complex semantics of arbitrary distance (e.g., Se-
mantic Roles). Raising concerns about remaining faithful to the information encoded in the representations, Kuznetsov & 
Gurevych [51] proposes reducing the expressive power of learned probes while improving edge probing.

Liu et al. [58] ran several probing experiments with simpler probes (i.e., linear classifiers), investigating differences be-
tween NLM architectures, namely ELMo, GPT and BERT, while still finding competitive performance with state-of-the-art 
task-specific models. They confirm that LSTM-based models (i.e., ELMo) present more task-specific (less transferable) top lay-
ers, but Transformers-based models (i.e., BERT) are less predictable and do not exhibit monotonic increase in task-specificity, 
in line with our own findings. GPT was found to significantly underperform ELMo and BERT, which Liu et al. [58] attributes 
to the fact that GPT is trained unidirectionally (left-to-right), while ELMo and BERT are trained bidirectionally.

3.3.2. Representational similarity
Without recourse to learned probes, Ethayarajh [33] investigated differences between ELMo, GPT-2 and BERT, relying on 

experiments based on cosine similarity to learn about the context-specificity of their representations. Ethayarajh [33] found 
that top layers show highest degree of context-specificity, but all layers of all three models produced highly anisotropic 
representations, with directions in vector space confined to a narrow cone, concluding that this property is an inherent con-
sequence of the contextualization process. The anisotropy observed for all contextualized NLMs also supports the hypothesis 
of Reif et al. [95] that sense-level information is encoded in a low-dimensional subspace, since contextualization is crucial 
for sense disambiguation.

Vulić et al. [119] reached similar conclusions regarding the detrimental contribution of top layers for lexical tasks (e.g., 
lexical semantic similarity) while also finding improved results from averaging different layers, particularly task-specific 
layer subsets, prompting further research into layer weighting or meta-embedding approaches, and motivating the present 
work. Through direct comparison of cosine similarities, Chronis & Erk [19] reached similar conclusions as Vulić et al. [119]
about the role of top layers for lexical similarity tasks, adding that top layers appear to better approximate relatedness than 
similarity.

Voita et al. [116] probed Transformer-based NLMs from an Information-Bottleneck perspective to learn about differences 
in information flow across the network according to language modeling pre-training objectives, particularly left-to-right, 
MLM, and translation. They find that the MLM objective induces representation of token identity in the lower layers, fol-
lowed by a more generalized token representation in intermediate layers, and then token identity information gets recreated 
at top layers.

Mickus et al. [71] specifically verified whether BERT representations comprise a coherent semantic space. These exper-
iments are explicitly detached from learned probes, as Mickus et al. [71] explains that such methodology interferes with 
direct assessment of the coherence of the semantic space as produced by NLMs. Using cluster analyses, they find that BERT 
indeed appears to represent a coherent semantic space (based only on representations from the final layer), although its 
Next Sentence Prediction (NSP) modeling objective leads to encoding semantically irrelevant information (sentence position), 
corrupting similarity relationships and complicating comparisons with other NLMs.

4. Method

We propose a principled approach for sense representation based on contextual NLMs trained exclusively with self-
supervision. This approach is an extension of Loureiro & Jorge [61], addressing relevant issues still largely unresolved, 
particularly the influence of embeddings from the different layers composing NLMs, with the introduction of a novel layer 
probing methodology. Moreover, in this work, we reinforce the distinction between sense disambiguation and sense match-
ing by introducing methodological differences specific to each application scenario.

This section starts by explaining the methods used in Loureiro & Jorge [61] for learning (§4.1), extending (§4.2) and 
applying sense embeddings (§4.3). Afterwards, we introduce our proposed layer probing methodology (§4.4), including how 
the resulting analysis informs a grounded pooling operation for combining embeddings from all layers of a NLM.
6
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Fig. 1. Overview of learning sense embeddings from annotated corpora. Showing how the sense ψ for ‘computer mouse’ is determined from a set for 
sentences annotated with that sense Sψ (padded with special tokens as expected by the NLM �). After pooling contextual embeddings Cψ from layers L, 
the sense embedding for �ψ is computed as the centroid of Cψ .

4.1. Learning sense embeddings

The initial process to learn sense embeddings is based on sense-annotated sentences and contextualized embeddings of 
annotated words or phrases in context. An overview of the process can be seen at Fig. 1.

Formally, in order to generate sense embeddings learned in context from natural language, we require a pre-trained 
contextual NLM � (frozen parameters) and a corpus of sense-annotated sentences S . Every sense ψ is represented from 
the set of contextual embeddings �cl ∈ Cψ , obtained by employing � on the set of sentences Sψ annotated with that sense 
(considering only contextual embeddings specific to tokens annotated with sense ψ ), using representations at each layer 
l ∈ L, such that:

�ψ = 1

|Cψ |
∑

l∈L

∑

�c∈Cψ

�cl , where Cψ = �(Sψ) (1)

The L set of layers typically used for sense representation is the last four [−1, −2, −3, −4] (reversed layer indices), as 
discussed in Section 3.1.

Contextual NLMs typically operate at the subword-level, so the token-level embeddings �c produced by � correspond 
to the average of each token’s subword contextual embeddings (depending on the NLM, these may be BPE or WordPiece 
embeddings). Similarly, whenever sense-annotations cover a span of several tokens, we also use the average of the corre-
7
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sponding token-level embeddings as the contextual embedding. Contextual NLMs are pre-trained using special tokens at 
specific locations, so we also include these tokens in their expected positions (e.g., [CLS] at the start and [SEP] at the 
end with BERT).

As described in Section 2.3, WordNet can be used to represent senses in two ways: sensekeys and synsets. Sense-
annotated corpora most often use sensekey annotations, so in those cases sensekey embeddings do not require any interme-
diate mapping. Synset embeddings can be derived from sensekey annotations in at least two ways, which we differentiate as 
‘direct’ and ‘indirect’. In the direct approach, each sensekey annotation is converted (mapped) to the corresponding synset, 
so synset representations are learned from each annotation instance. In the indirect approach we first learn sensekey-level 
embeddings, without converting annotations, and afterwards compute synset embeddings as the average of corresponding 
sensekey embeddings. The latter approach has been explored in earlier works in sense embeddings [99]. In this work we 
explore both approaches.

4.2. Extending coverage with additional resources

Given that one of the major issues in supervised WSD is the lack of sense annotations [80], not just in their quantity 
but also in terms of their coverage of the sense inventory, we require solutions to address this in our method. On this 
matter, we also follow the methods we first proposed in Loureiro & Jorge [61] and later optimized with the introduction of 
the UWA corpus in Loureiro & Camacho-Collados [60]. The two methods, ontological propagation and gloss representation, 
are designed to reach full coverage of the sense inventory, and they are complementary by exploiting different resources, 
namely semantic relations between senses and glosses (combined with lemmas).

4.2.1. Ontological propagation
In Section 2.3 we introduced WordNet and the different elements and relations composing this semantic network. The 

ontological propagation method we presented in Loureiro & Jorge [61] exploits these relations between senses in WordNet 
in order to infer embeddings for senses which may not occur in annotated corpora. It is possible to infer accurate sense 
embeddings from these relations due to the fine-granularity of WordNet, along with widespread synonymy and hypernymy 
relations, to the extent that in Loureiro & Camacho-Collados [60] we showed that even annotations for unambiguous words 
can significantly improve the propagation process.

Since available corpora do not provide full-coverage annotations for our sense inventory of interest, by following the pro-
cess described in Section 4.1 we are left with a represented senses �, and a set of unrepresented senses �′ . The propagation 
process involves three steps, using increasingly abstract relations from WordNet - sets of synonyms (synsets), hypernymy 
relations, and lexical categories (lexnames or supersenses). In case we are targeting synset-level representations, then the 
first step/level should be skipped.

Considering we are provided mappings between sensekeys, synsets, hypernyms and lexnames, we infer �′ iteratively 
following Algorithm 1. After each of these sequential steps, every inferred �ψ is added to the set of represented senses �. 
This propagation method ensures full-coverage provided that initial sense embeddings � are sufficiently diverse such that 
falling back on propagating from lexnames (supersenses) is always possible.

Algorithm 1: Propagation method to infer unrepresented senses �′ , using sense embeddings � learned from anno-
tations, and relations R .

Propagate (�, �′, R)

foreach unrepresented sense ψ ′ ∈ �′ do
Rψ ′ ← {all represented �ψ ∈ � for which (ψ, ψ ′) ∈ R};
if |Rψ ′ | > 0 then

�ψ ′ ← average of sense embeddings in Rψ ′ ;

Insert( �ψ ′, �); // add to represented
Remove(ψ ′, �′); // remove from unrepresented

return �, �′;

�, �′ ← Propagate (�, �′ , {all (ψ, ψ ′) : Synset(ψ) = Synset(ψ ′)})

�, �′ ← Propagate (�, �′ , {all (ψ, ψ ′) : Hypernym(ψ) = Hypernym(ψ ′)})

�, �′ ← Propagate (�, �′ , {all (ψ, ψ ′) : Lexname(ψ) = Lexname(ψ ′)})

Since this method is designed to achieve full-representation of the sense inventory based on a subset of senses observed 
in context, the inferred representations are also of a similar contextual nature. However, unless the initial set of sense 
embeddings is nearly complete, and particularly diversified, this propagation method produces some number of identical 
representations for distinct senses, which is most undesirable for disambiguation applications, and to a lesser extent, sense 
matching applications as well.
8
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4.2.2. Leveraging glosses and lemmas
In Loureiro & Jorge [61] we introduced a method for representing sense embeddings based on glosses and lemmas. This 

method is inspired by a typical baseline approach used in works pertaining to sentence embeddings, and it amounts to 
simply averaging the contextual embeddings for all tokens present in a sentence. In our case, we use glosses as sentences, 
but also introduce lemmas into the gloss’ context. By combining glosses with lemmas, we not only augment the information 
available to represent senses, but we are also able to generate sense embeddings which are lemma-specific (sensekey-level), 
instead of only concept-specific (synset-level) if we only used glosses. As such, sense embeddings generated by this method 
address the redundancy issue arising from the previously described propagation method, while simultaneously introducing 
representational information which is complementary to contextual embeddings extracted from sense-annotated sentences.

The method proceeds as follows. For every lemma/sense pair (i.e., sensekey) in a sense inventory, we build the template 
“<lemma>, <sense lemmas> - <sense gloss>”. For instance, based on WordNet, the synset racev

2 has the lemmas race and 
run which are provided with the following sensekey-specific fill-outs of the template:

• race%2:33:00:: - “race - run, race - compete in a race”
• run%2:33:01:: - “run - run, race - compete in a race”

The initial “<lemma>” component of the template can be omitted if the target representation level is synsets, as it only 
serves the purpose of reinforcing the lemma which is specific to the sensekey. The templated string is processed by �, 
similarly to sentences S in Section 4.1, but here we use the resulting set of contextual embeddings for every token C� .

Considering that we have a complete set of sense embedding �, based on sense annotations and propagation as de-
scribed in Sections 4.1 and 4.2.1, we augment ∀ �ψ ∈ � with gloss and lemma information as follows:

�ψ = 1

2
(|| �ψ ||2 + || 1

|C�|
∑

l∈L

∑

�c∈C�

�cl||2) , where C� = �(Template(ψ)) (3)

In contrast to Loureiro & Jorge [61], which proposed using concatenation to merge this new set of sense embeddings 
based on glosses and lemmas with the previously mentioned set, in this work we propose merging through averaging 
instead. This departure is motivated by the fact that Loureiro & Jorge [61] found that while concatenation outperformed 
averaging for WSD, the difference in performance was modest, and in this work we are interested in additional tasks which 
that work did not cover. Merging representations through concatenation doubles the dimensionality of sense embeddings, 
increasing computational requirements and complicating comparison with contextual embeddings, among other potential 
applications. On the other hand, merging representations through averaging allows for adding more components while 
retaining a similar vector, of equal dimensionality to contextual embeddings, and represented in the same vector space.

4.3. Applying sense embeddings

In this section we address how sense embeddings can be employed for solving various tasks, grouped under two 
paradigms: disambiguation and matching. Disambiguation assigns a word in context (i.e., in a sentence) to a particular 
sense out of a subset of candidate senses, restricted by the word’s lemma and part-of-speech. Matching also assigns specific 
senses to words, but imposes no restrictions, admitting every entry in the sense inventory for each assignment.

The different conditions for disambiguation and matching require sense representations with different degrees of lexical 
information and semantic coherence. Whereas, for disambiguation, lexical information can be absent from sense represen-
tations, due to the subset restrictions, for matching, lexical information is essential to distinguish between word forms 
carrying identical or similar semantics. Similarly, the disambiguation setting has no issues with sense representations dis-
playing inconsistencies such as eat being more similar to sleep than to drink, since these all belong to disjoint subsets, 
but the order and coherence of these similarities is relevant for sense matching applications. This distinction leads us to 
specialize sense embeddings accordingly in Section 4.4.

To disambiguate a word w in context, we start by creating a set �w of candidate senses based on its lemma and part-
of-speech, using information provided with the sense inventory. Afterwards, we compute the cosine similarities (denoted 
‘cos’) between the word’s contextual embedding �cw and the pre-computed embeddings for each sense in this subset �w

(both using the same layer pooling). Finally, we assign the sense whose similarity is highest (i.e., nearest neighbor):

�w = { �ψ ∈ � : lemma and part-of-speech of ψ match w}
Disambiguation(w) = arg max

�ψ∈�w

(cos(�cw , �ψ)) (4)

To match a word w in context, without restrictions, we follow the approach for disambiguation but simply consider the 
full sense inventory � instead of �w :

Matching(w) = arg max
�

(cos(�cw , �ψ)) (5)

ψ∈�

9
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4.4. Grounding layer pooling

Up until this point, we have described our method closely following our prior work in Loureiro & Jorge [61]. As we 
covered in earlier sections, NLMs can show substantial and, more importantly, unexpected variation in task performance 
across their layers. Considering this work’s focus on more principled and grounded sense representation with NLMs, our 
methodology also covers this important aspect.

In this section we present two methods targeting the layers composing NLMs. The first method probes each layer’s adept-
ness for sense representation. Consequently, the second method in this section is designed to capitalize on that knowledge 
towards sense representations which better capture each NLM’s ability to represent senses over the current paradigm.

As we alluded to in Section 4.3, sense representation should be viewed in light of the intended applications for these 
representations. In particular, in this work we differentiate between representations used for disambiguating words, and 
for matching or comparing senses. This distinction is motivated by the fact that disambiguation, which is the prevalent 
sense-related task on NLP, only requires that sense representations be adequately differentiated between the restricted set 
of senses which share the same lemmas and parts-of-speech. However, there exist other potential applications where sense 
representations are matched without any constraints on the sense inventory, and thus require that senses be coherently 
represented across the semantic space.

4.4.1. Sense probing
In order to assess the contribution of individual layers of a pre-trained NLM for sense representation, we directly eval-

uate the performance of representations from these layers on tasks related to the previously described disambiguation or 
matching scenarios. These tasks are solved using the nearest neighbors approaches described in Section 4.3, comparing 
pre-computed sense embeddings with contextual embeddings obtained from the same layer.

For this probing experiment, we follow the method for learning sense representations described in Section 4.1, but create 
multiple sets of senses �l for each layer l in the NLM. To maintain focus on assessing the performance of representations 
learned directly from specific layers, we ensure that test instances have all their senses represented in the sense-annotated 
corpora used to precompute �l , ∀l ∈ L. Thus, our probing experiments do not use techniques to infer or enrich sense 
representations, such as those we described in Section 4.3, which could otherwise act as confounders.

The resulting performance scores for every layer l ∈ L composing a specific �, using a corresponding �l , not only reveal 
which layers perform best, but also inform the layer pooling method described next.

4.4.2. Sense profiling
We use the probing results described earlier as the basis for a pooling operation which is better grounded than the 

current paradigm of using the sum of the last four layers, and also better performing as we show later in this work. We 
designate each set of model-specific layer weights as a ‘sense profile’, and consider distinct sense profiles for disambiguation 
and matching, depending on the choice of disambiguation or matching tasks during layer probing.

These proposed sense profiles are a more immediate version of the Scalar Mixing used in Tenney et al. [111], being 
based on heuristically-derived sets of layer weights, instead of learning them through task optimization. Considering this, 
we understand sense profiles to be closer to the extraction configurations of Vulić et al. [119].

Granted we have performance scores sl ∀l ∈ L, for a specific �, we obtain layer specific weights wl ∀l ∈ L by applying 
the softmax function:

wl = exp(sl/t)∑
l′∈L exp(sl′/t)

(4)

We use the temperature scaling parameter t to skew the weight distribution towards highest performing layers. While 
simple, temperature scaling has been found surprisingly effective at calibrating neural network predictions [39]. This pa-
rameter is to be determined empirically and is only specific to application settings, not models.

In Table 1 we demonstrate the interaction between performance scores and layer weights conditioned on the temperature 
parameter. In that table, and others found in this work, we use reverse layer indices so that we can consistently refer to the 
final layer of any model using the -1 index, regardless of the number of layers in the NLM.

Consequently, we employ sense profiles comprised of weights wl ∀l ∈ L to retrieve contextual embeddings from �, and 
generate our sense embeddings accordingly, updating formula (1) such that:

�ψ = 1

|Cψ |
∑

l∈L

∑

�c∈Cψ

wl ∗ �cl , where Cψ = �(Sψ) (5)

This set of sense embeddings learned from annotations using sense profiles, undergoes the same extensions and aug-
mentations described earlier (§4.2).

To be clear, the process of probing layer performance and determining sense profiles to pool contextual embeddings 
from all layers (including when learning sense embeddings from annotations) is carried out for both the disambiguation 
and matching settings independently. As a result, we produce two sets of sense embeddings for each NLM based on sense 
profiles, which we distinguish from the LMMS sense embeddings introduced in Loureiro & Jorge [61] as LMMS-SP (Sense 
10
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Table 1
Shows interaction between F1 scores (rounded) for 1NN WSD using each layer of four different NLMs, and respective weight distributions 
(matching colors) using decreasing temperature parameters. Lower temperatures induce higher skewness towards layers that perform 
best on the probing validation set. Distributions based on t=1.000 are almost uniform, while t<0.002 would place almost all mass on 
single best layer. (For interpretation of the colors in the figure(s)/table(s), the reader is referred to the web version of this article.)

Profiles). The SP-WSD (for Word Sense Disambiguation) and SP-USM (for Uninformed Sense Matching) abbreviations are 
used to refer to sense embeddings based on disambiguation and matching sense profiles respectively.

5. Experimental setting

In this section we provide details about our experimental setting, including a description of the models (§5.1) and 
datasets (§5.2) used for learning sense representations.

5.1. Transformer-based language models

In this work we experiment with several Transformer-based Language Models, including all the original English BERT 
models released by Devlin et al. [29] as well as several other BERT-inspired alternatives, namely XLNet [124], RoBERTa [59]
and ALBERT [52]. This section briefly describes the most relevant features of each of these models for our use case. We 
summarize the differences between each variant of these models on Table 2.

BERT. The model released by Devlin et al. [29] is first prominent Transformer-based NLM designed for language understand-
ing. It is pre-trained with two unsupervised modeling objectives, Masked Language Modeling (MLM) and Next Sentence 
Prediction (NSP), using English Wikipedia and BookCorpus [128]. It uses WordPiece tokenization, splitting words into differ-
ent components at the character-level (i.e., subwords). BERT is available in several models differing not only on parameter 
size, but also tokenization and casing. The ‘whole-word’ models were released after publication, showing slightly improved 
benchmark performance when trained with whole words being masked instead of subwords resulting from WordPiece tok-
enization.
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Table 2
Feature comparison for the NLMs used in this work. Configuration names are shortened for readability: B - Base; L - Large; 
XL - Extra Large; XXL - Extra Extra Large; UNC - Uncased; WHL - Whole-Word.

Model Configuration Params. Layers Heads Dims. Tokenization Tasks Corpus

BERT

B 110M 12 12 768 WordPiece MLM, NSP 16 GB
B-UNC 110M 12 12 768 WordPiece, Unc. MLM, NSP 16 GB
L 340M 24 16 1024 WordPiece MLM, NSP 16 GB
L-UNC 340M 24 16 1024 WordPiece, Unc. MLM, NSP 16 GB
L-WHL 340M 24 16 1024 WordPiece MLM, NSP 16 GB
L-UNC-WHL 340M 24 16 1024 WordPiece, Unc. MLM, NSP 16 GB

XLNet
B 110M 12 12 768 SentencePiece PLM 158 GB
L 340M 24 16 1024 SentencePiece PLM 158 GB

RoBERTa
B 125M 12 12 768 Byte-level BPE MLM 160 GB
L 355M 24 16 1024 Byte-level BPE MLM 160 GB

ALBERT

B 11M 12 12 768 SentencePiece MLM, SOP 160 GB
L 17M 24 16 1024 SentencePiece MLM, SOP 160 GB
XL 58M 24 16 2048 SentencePiece MLM, SOP 160 GB
XXL 223M 12 64 4096 SentencePiece MLM, SOP 160 GB

XLNet. Based on a Transfomer-XL [26] architecture, Yang et al. [124] release XLNet featuring Permutation Language Modeling
(PLM) as the only pre-training objective. The motivation for PLM is that it does not rely on masked tokens, and thus makes 
pre-training closer to fine-tuning for downstream tasks. It is also trained on much larger corpora than BERT, adding a large 
volume of web text from various sources to the corpora used for BERT. Instead of using WordPiece for tokenization, XLNet 
uses SentencePiece [50], which is a very similar open-source version of WordPiece.

RoBERTa. The model proposed by Liu et al. [59] is explicitly designed as an optimized version of BERT. RoBERTa does 
not use the NSP pre-training objective after finding that it deteriorates performance in the reported experimental setting, 
performing only MLM during pre-training. It is also trained with some different choices of hyperparameters (e.g., larger 
batch sizes) that improve performance on downstream tasks. The models released with RoBERTa are also trained on larger 
corpora composed mostly of web text, similarly to XLNet. As for tokenization, RoBERTa opts for byte-level BPE, following 
Radford et al. [92], which makes retrieving embeddings for specific tokens more challenging (i.e., spacing must be explicitly 
encoded).

ALBERT. Aiming for a lighter architecture, Lan et al. [52] propose ALBERT as a more parameter-efficient version of BERT. 
In spite of changes introduced to improve efficiency (e.g., cross-layer parameter sharing), ALBERT is based on a similar 
architecture to BERT. Besides improving efficiency, ALBERT also improves performance on downstream tasks by replacing 
NSP with the more challenging Sentence Order Prediction (SOP) objective. ALBERT uses the same SentencePiece tokenization 
as XLNet, and it is trained on similar corpora. It is released in several configurations, showing benchmark performance 
comparable to BERT while using fewer parameters.

The full set of 14 model variants detailed on Table 2 are only used for layer-specific validation performance on WSD and 
USM tasks. For task evaluation and analyses, we proceed with the single best performing model configuration from each 
model family, according to results from the validation experiments.

We use the Transformers package [122] (v3.0.2) for experiments with BERT, XLNet and ALBERT, and the fairseq package 
[79] (v0.9.0) for experiments with RoBERTa.4

5.2. Corpora for training and validation

We learn the initial set of sense representations described in Section 4.1 using sense-annotated corpora, namely SemCor 
[74] and the Unambiguous Word Annotations corpus (UWA) [60].

SemCor is a sense-annotated version of the Brown Corpus that still remains the largest corpus with manual sense-
annotations despite its age. It includes 226,695 annotations for 33,362 sensekeys (25,942 synsets), reaching a coverage of 
16.1% of WordNet’s sense inventory. We use the version released in Raganato et al. [94], which includes mappings updated 
to WordNet version 3.0.

UWA is our recently introduced corpus composed exclusively of annotations for unambiguous words from Wikipedia 
sentences. Since WordNet is mostly composed of unambiguous words, UWA not only allows for representing the majority 
of WordNet senses (56.7%, when combined with SemCor) from direct annotations, but also leads to improved sense repre-
sentation for senses learned through propagation (as described in Section 4.2.1), due to network effects. UWA is released 
in several versions of different sizes, in this work we use the version with up to 10 examples per sense (denoted UWA10), 
which includes 867,252 annotations for 98,494 sensekeys (67,860 synsets).

4 Initial experiments with RoBERTa showed slightly better results using fairseq.
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In order to avoid interference with the standard test sets, we perform our layer analysis and probing using a custom 
validation set, based on the MASC5 corpus [46], following Loureiro et al. [63]. Considering that our layer experiments are 
focused on intrinsic properties of NLMs, this custom version of the MASC corpus is restricted to only include annotations 
for senses that occur in SemCor. Any sentence annotated with senses not occurring in SemCor is discarded, leaving a total 
of 14,645 annotations. As such, our layer experiments use sense embeddings learned from SemCor and validated using this 
restricted version of MASC, without requiring strategies for inferring senses (e.g., ontological propagation), or fallbacks (e.g., 
Most Frequent Sense).

6. Probing analysis

In this section we present the outcome of the probing methodology described in Section 4.4 applied on the models 
detailed in Section 5.1. We report probing results in this section so they are presented and discussed before the evaluation 
and analysis sections, which report downstream task results using layer pooling informed by the probing analysis.

This section starts by covering our initial findings regarding layer performance variation patterns observed for all models 
(§6.1). Second, we present validation results using our proposed sense profiles for both disambiguation and matching sce-
narios (§6.2). Finally, we present our rationale for choosing which sense profile should be used according to the type of task 
(§6.3).

6.1. Variation in layer performance across NLMs

As discussed in Section 3.3, it is well-understood that task performance varies considerably depending on which layers 
are used to retrieve embeddings from. While some works have analyzed task performance per layer specifically for the task 
of WSD [95,63], there is still lacking an in-depth cross-model comparison.

In Table 3 we report WSD and USM performance for individual layers of each of the 14 models belonging to 4 different 
Transformer-based model families. These results are obtained using the methodology described in Section 4.4.1. We observe 
that indeed, the final layer (-1) is never optimal for either WSD or USM performance. More interestingly, we find that while 
the second-to-last layer (-2) always performs best for WSD in BERT models (with the exception of BERT-L-UNC-WHL), that 
pattern does not hold for the other models tested. For some models, such as XLNet-L or ALBERT-L, we even find that the best 
performing layers are closer to the initialization layer (INIT) than to the final layer. Another apparent pattern is that the 
best performing layers for USM are consistently lower than for WSD. This can be explained by the fact that USM benefits 
from lexical information encoded in the lower layers, even though the initialization layer still performs worst, just as with 
WSD, demonstrating that it is not sufficient by itself.

These empirical results suggest that any layer pooling strategy based on a fixed set of layers, such as the often used sum 
of layers [-1,-4], cannot accurately capture the available sense information encoded in pre-trained NLMs.

6.2. Sense profiles for disambiguation and matching

In Section 4.4.2 we described our method for uncovering a model-specific set of layer weights which informs a weighted 
layer pooling that results in improved sense representations. We have applied this method to all our models, for both dis-
ambiguation and matching scenarios, in order to verify whether our proposed method reliably improves performance on 
WSD and USM tasks when compared to conventional pooling approaches. Additionally, we also compare against different 
values for the temperature t parameter. In order to understand whether our recommended t values actually result in im-
proved test-time performance for these tasks, we run a limited evaluation on the ALL test set of Raganato et al. [94] where 
we compare NLMs using only our method as described until Section 4.2.1 (without using glosses) and trained solely with 
SemCor annotations. Later, in Sections 7.1 and 7.2, we report WSD and USM results using our final solution in comparison 
with the current state-of-the-art.

The conventional layer choices we considered are the following: last/final (L−1); second-to-last (L−2); sum of last 4 
(L−1 + L−2 + L−3 + L−4); integer weighted sum of last 4 (L−1 + 2 ∗ L−2 + 3 ∗ L−3 + 4 ∗ L−4); fractional weighted sum of last 
4 ( 1

4 ∗ L−1 + 1
3 ∗ L−2 + 1

2 ∗ L−3 + L−4). We tested temperature values t ∈ {0.002, 0.005, 0.01, 0.1, 1.0}.6 Below we discuss our 
findings regarding the impact of sense profiles specific to each task.

The WSD validation results on Table 4 reveal that the single best layer (which varies depending on model, see Table 3) 
consistently outperforms the sum of last 4 layers. We also find that WSD sense profiles with t = 0.002 and t = 0.005
perform comparably to the single best layer, with t = 0.002 being slightly closer on average. Given the close performance, 
we opt for recommending t = 0.005 as higher values are less likely to overfit on the validation set (bias-variance tradeoff). 
In the limited evaluation results on Table 5 we compare the performance of conventional layer choices against WSD sense 
profiles with the recommended temperature value. We observe that for 11 out of 14 models, WSD sense profiles with 
the recommended temperature reliably outperform any of the conventional choices, of which none stands out as a reliable 

5 We use the version of the MASC corpus released in Vial et al. [114].
6 t = 0.001 results in large exponents that cause overflow errors.
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Table 3
Performance variation on the development set across all models and configurations con-
sidered in this work. Green represents best performing layers (best is marked with �), 
red represents worst performing layers, and grey stands for layers missing in shallower 
variants.

cross-model choice. Moreover, on Table 5 we also see that WSD sense profiles with the recommended temperature generally 
match or outperform both the single layers which performed best on the validation set, and the WSD sense profiles using 
the temperature value that showed best performance on the validation set.

Our findings regarding performance of USM sense profiles largely follow the previously mentioned findings for WSD 
sense profiles. In the case of USM, validation results on Table 6 more clearly show that t = 0.100 performs better, although 
t = 1.000 also performs well. As for the limited evaluation results, Table 7 shows that conventional layer choices significantly 
underperform any of the alternatives introduced in this work, with the USM sense profile with recommended temperature 
(t = 0.100) showing overall best performance.

6.3. Choosing sense profiles for different tasks

Having established that our proposed sense profiles improve WSD and USM performance over conventional layer choices, 
the question remains of whether to choose WSD or USM sense profiles to represent sense embeddings. In this work we 
propose choosing sense profiles based on the probing task that shares most similar constraints to the downstream task 
of interest. More specifically, tasks requiring comparison of different senses for the same word fit the disambiguation pro-
file, such as classical WSD [75] or WiC [88], and benefit less from information in lower layers. On the other hand, tasks 
without lexical constraints, not only USM but also synset similarity [20] or semantic change [40], are better suited to the 
14
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Table 4
WSD validation results (F1). Reports best single layer and weighted sums using specific sense profiles, with different t values, for each model configuration. 
Sense representations for this experiment were learned from SemCor (no propagation required).

Model
Sum 
LST4

Layer 
Best

Weighted Sum (WS)

t=0.002 t=0.005 t=0.010 t=0.100 t=1.000

BERT

B 71.6 72.5 (-2) 72.4 72.2 71.8 69.6 68.6
B-UNC 71.9 73.0 (-2) 72.9 72.8 72.3 70.3 69.1
L 73.8 74.7 (-2) 74.7 74.5 74.3 72.2 70.9
L-UNC 72.7 72.9 (-2) 72.9 72.7 72.7 71.5 70.8
L-WHL 72.0 73.0 (-2) 73.1 72.6 71.8 70.4 69.1
L-UNC-WHL 71.5 72.7 (-8) 72.6 72.1 72.0 71.5 70.7

XLNet
B 66.6 70.9 (-3) 71.0 71.2 71.2 70.3 69.9
L 66.5 72.7 (-17) 73.0 73.4 73.3 72.4 71.8

RoBERTa
B 72.5 72.9 (-3) 72.8 72.6 72.2 71.6 71.2
L 74.1 74.9 (-10) 74.9 74.7 74.4 73.6 73.1

ALBERT

B 68.3 68.9 (-5) 68.3 68.2 68.1 67.6 67.3
L 69.4 70.5 (-15) 70.2 70.0 69.9 69.3 69.3
XL 68.2 71.4 (-13) 71.1 71.1 71.0 70.5 70.4
XXL 72.4 73.8 (-6) 73.5 73.4 73.3 72.8 72.4

Table 5
WSD test results (F1 on ALL). Reports conventional layer choices and alternatives using sense profiles. Recommended t for USM is 0.005. Sense representa-
tions for this experiment were learned from SemCor (with propagation).

Model
Standard Proposed

Layer Layer Sum WS (I) WS (F) Layer WS WS
-1 -2 LST4 LST4 LST4 Best Dev Rec. t Best t

BERT

B 72.1 72.9 72.6 72.5 72.5 72.9 (-2) 72.8 72.9 (.002)
B-UNC 73.5 73.5 73.0 73.3 73.3 73.5 (-2) 73.4 73.5 (.002)
L 73.3 73.9 74.0 74.0 74.0 73.9 (-2) 74.2 74.0 (.002)
L-UNC 73.4 73.6 73.9 74.0 74.0 73.6 (-2) 74.0 73.8 (.002)
L-WHL 72.0 73.4 73.2 73.1 73.0 73.4 (-2) 73.5 73.4 (.002)
L-UNC-WHL 72.0 73.0 72.9 72.8 72.8 65.4 (-8) 73.1 73.1 (.002)

XLNet
B 69.1 67.4 64.8 62.7 63.7 55.4 (-3) 72.3 72.3 (.005)
L 66.2 70.4 65.7 64.8 66.1 57.5 (-17) 73.8 73.8 (.005)

RoBERTa
B 71.9 73.3 73.3 73.4 73.3 73.5 (-3) 73.6 73.7 (.002)
L 71.2 74.0 74.1 74.0 73.9 66.3 (-10) 74.7 74.7 (.002)

ALBERT

B 70.6 69.6 70.1 70.1 70.3 67.3 (-5) 69.7 69.7 (.002)
L 70.1 70.5 70.5 70.6 70.4 67.7 (-15) 71.1 70.7 (.002)
XL 64.3 69.0 68.8 67.8 67.2 66.6 (-12) 73.0 73.0 (.002)
XXL 69.4 73.7 73.9 73.1 72.5 74.8 (-6) 75.1 75.1 (.002)

matching profile, which uses information from more layers. In Section 7 we evaluate sense embeddings learned using sense 
profiles according to each task’s constraints, and in Section 8.1 we analyze the performance gap when using alternate sense 
profiles.

7. Evaluation

In this work we address several sense-related tasks selected to investigate the versatility of the proposed sense em-
beddings, covering disambiguation (§7.1 - WSD), matching (§7.2 - USM), meaning change detection (§7.3 and §7.4 - WiC 
and GWCS) and sense similarity (§7.5 - SID). For each task, we report our new results (LMMS-SP) in comparison with the 
state-of-the-art and the original LMMS [61] sense embeddings.

For brevity, we only consider the variant from each model family that showed best results in our probing analysis 
(§6). In our comparisons, we omit LMMS2348 because those sense embeddings are concatenated with fastText [12] word 
embeddings, thus not exclusively based on representations from particular NLMs, as focused in this work.

All tasks are solved essentially using cosine similarity between contextual embeddings and LMMS-SP precomputed sense 
embeddings represented using the same NLM. Each task’s subsection provides more details about how these similarities 
are used to produce task-specific predictions. No additional task-specific training or validation datasets are used asides 
from those referred in Section 5.2, and all NLMs are employed in the same exact fashion - simply retrieving contextualized 
representations from each layer (following §4.1).
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Table 6
USM validation results (F1). Reports best single layer and weighted sums using specific sense profiles, with different t values, for each model configuration. 
Sense representations for this experiment were learned from SemCor (no propagation required).

Model
Sum 
LST4

Layer 
Best

Weighted Sum (WS)

t=0.002 t=0.005 t=0.010 t=0.100 t=1.000

BERT

B 59.2 61.2 (-6) 61.5 61.5 61.8 62.2 62.0
B-UNC 58.6 63.1 (-8) 63.1 63.2 63.5 63.7 63.7
L 57.7 63.8 (-14) 63.9 64.0 63.9 64.5 64.5
L-UNC 56.8 64.3 (-14) 64.4 64.6 64.6 65.4 65.7
L-WHL 59.7 62.1 (-14) 62.1 62.0 62.1 62.7 62.5
L-UNC-WHL 59.1 64.8 (-14) 64.7 64.5 64.5 64.7 64.8

XLNet
B 34.7 61.2 (-9) 61.3 61.4 61.4 61.9 60.4
L 28.0 63.6 (-18) 63.5 63.6 63.7 64.4 64.1

RoBERTa
B 61.6 64.2 (-9) 64.0 63.9 64.0 64.0 63.9
L 64.1 65.3 (-17) 65.2 65.4 65.8 66.1 66.2

ALBERT

B 60.0 61.8 (-8) 61.9 61.8 61.7 61.6 61.6
L 60.0 64.1 (-16) 63.5 63.5 63.2 63.3 63.2
XL 54.9 64.5 (-18) 64.2 64.1 64.2 64.5 64.6
XXL 65.8 65.8 (-9) 65.7 66.1 66.1 66.2 66.3

Table 7
USM test results (F1 on ALL). Reports conventional layer choices and alternatives using sense profiles. Recommended t for USM is 0.1. Sense representations 
for this experiment were learned from SemCor (with propagation).

Model
Standard Proposed

Layer Layer Sum WS (I) WS (F) Layer WS WS
-1 -2 LST4 LST4 LST4 Best Dev Rec. t Best t

BERT

B 53.1 51.2 53.7 53.0 53.0 57.0 (-6) 57.7 57.7 (.100)
B-UNC 50.4 50.4 53.0 51.8 52.3 57.9 (-8) 58.8 58.8 (.100)
L 53.9 50.3 52.5 52.8 53.4 58.9 (-14) 60.0 60.0 (.100)
L-UNC 48.3 46.7 49.0 48.8 48.8 58.5 (-14) 60.3 60.4 (1.00)
L-WHL 53.3 54.3 54.5 54.2 54.5 57.6 (-14) 58.4 58.4 (.100)
L-UNC-WHL 53.7 52.4 53.3 53.3 53.3 58.3 (-14) 59.4 59.6 (1.00)

XLNet
B 38.1 36.9 31.4 27.8 28.9 57.3 (-9) 57.3 57.3 (.100)
L 27.9 41.3 28.7 28.2 29.6 59.0 (-18) 60.4 60.4 (.100)

RoBERTa
B 53.7 53.2 55.1 55.3 55.5 58.3 (-9) 59.2 59.2 (.100)
L 56.3 56.7 57.9 58.1 58.0 60.6 (-17) 61.2 61.2 (.100)

ALBERT

B 53.8 53.6 54.7 54.2 54.8 55.8 (-8) 56.2 56.3 (.002)
L 55.7 55.5 56.0 56.1 56.1 57.4 (-16) 58.4 57.3 (.005)
XL 41.2 48.5 49.8 48.0 47.4 59.9 (-18) 60.1 59.8 (1.00)
XXL 55.1 60.6 61.7 61.0 60.5 60.6 (-9) 62.3 62.3 (1.00)

Table 8
Example WSD instance from Raganato et al. [94]. Sentence, lemma and part-of-speech (POS) are provided. The 
goal is to predict the correct sensekey (sense from WordNet).

Sentence Lemma POS Gold Sensekey

Eyes that were clear, but also bright with a strange 
intensity, a sort of cold fire burning behind them.

fire NOUN fire%1:12:00::

As such, LMMS-SP performance on these tasks should be indicative of each NLM’s intrinsic ability to approximate mean-
ing representations learned during pre-training with language modeling objectives alone.

7.1. Word sense disambiguation (WSD)

WSD is the most popular and obvious task for evaluating sense embeddings. This task has been researched since the 
early days of Artificial Intelligence and constitutes an AI-complete task [75]. It is usually formulated as choosing the correct 
sense for a word in context out of a list of possible senses given the word’s lemma and part-of-speech tag (see Table 8). 
Several test sets have been proposed over the years, and the compilation of Raganato et al. [94] has emerged as the de facto 
evaluation framework for English WSD, which we also use. Naturally, this task suits sense profiles for WSD, and we follow 
the method described in Section 4.3.
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Table 9
F1 scores (%) for each test set in the WSD Evaluation Framework [94]. Top rows show results for models using sense annotations exclusively from SemCor 
(SC). Bottom rows show results for models augmenting SC with annotations from additional sources. Results marked with * correspond to development 
sets (and therefore ALL). For each group of results, we underline the best from LMMS.

Model 1NN Defs. Rels.
SE2 SE3 SE07 SE13 SE15 ALL

(n=2,282) (n=1,850) (n=445) (n=1,644) (n=1,022) (n=7,253)

Se
m

Co
r

(S
C)

MFS 65.6 66.0 54.5 63.8 67.1 64.8
context2vec [68] � 71.8 69.1 61.3 65.6 71.9 69.0
ELMo [84] � 71.6 69.6 62.2 66.2 71.3 69.0
BERT-L [61] � 76.3 73.2 66.2 71.7 74.1 73.5
SVC [115] � 76.6 76.9 69.0 73.8 75.4 75.4
GlossBERT [44] � 77.7 75.2 72.5* 76.1 80.4 77.0*
EWISER [9] � � 78.9 78.4 71.0 78.9 79.3* 78.3*
BEM [11] � 79.4 77.4 74.5* 79.7 81.7 79.0*
ConSeC [5] � 82.3 79.9 77.4* 83.2 85.2 82.0*

LMMS1024 [61] � � 75.4 74.0 66.4 72.7 75.3 73.8
LMMS2048 [61] � � � 76.3 75.6 68.1 75.1 77.0 75.4
LMMS-SPBERT-L � � � 76.1 74.0 67.0 75.2 77.4 75.0
LMMS-SPXLNet-L � � � 76.0 73.1 66.4 74.2 74.9 74.1
LMMS-SPRoBERTa-L � � � 77.2 73.5 67.9 75.5 76.4 75.2
LMMS-SPALBERT-XXL � � � 77.4 74.8 71.0 74.7 74.8 75.4

SC
+O

th
er

s SVC [115] � 79.4 78.1 71.4 77.8 81.4 78.5
KnowBERT [86] � 76.4 76.0 71.4 73.1 75.4 75.1
EWISER [9] � � 80.8 79.0 75.2 80.7 81.8* 80.1*
ARES [105] � � 78.0 77.1 71.0 77.3 83.2 77.9

SC
+U

W
A LMMS-SPBERT-L � � � 76.7 74.1 66.4 75.2 77.6 75.2

LMMS-SPXLNet-L � � � 76.1 73.1 65.9 74.2 75.0 74.1
LMMS-SPRoBERTa-L � � � 77.4 73.5 67.7 75.3 76.7 75.2
LMMS-SPALBERT-XXL � � � 77.7 75.0 70.5 74.7 74.9 75.5

7.1.1. Results
On Table 9 we report performance on the standard test sets of the WSD Evaluation Framework [94]. Given the breadth 

of recent WSD solutions, we make results more comparable by separating solutions using only SemCor annotations, and 
solutions augmenting SemCor with other sense-annotated datasets. In the case of LMMS-SP, we combine SemCor with the 
unambiguous annotations from UWA, which are easily retrieved from unlabeled corpora. We also report which solutions 
use glosses and relations, besides sense annotations, as well as which solutions are based on 1NN (first nearest neighbor) 
with precomputed sense embeddings represented in the space of NLMs.

When considering SemCor as the only source of annotations, LMMS and LMMS-SP remain the best solutions based on 
1NN in NLM-space. Most notably, LMMS-SPALBERT-XXL is able to match the performance of LMMS2048 on the combination of 
test sets (ALL) without concatenating gloss embeddings.

As could be expected, task-specific classifiers show best results, particularly BEM [11] and ConSeC [5]. Generally, solutions 
fine-tuning NLMs, or combining them with other classifiers trained for the WSD task show improved performance over 
1NN. Despite this, in Loureiro et al. [63] we have shown that 1NN solutions offer other advantages, such as better sample 
efficiency and less frequency biases, besides the versatility advocated in this current work.

Allowing for additional annotations, we find that LMMS-SP results improve slightly when using BERT-L and ALBERT-
XXL. ARES [105] uses semi-supervised annotations to increase coverage of the sense inventory with sense embeddings 
represented on the space of BERT-L. Results show the ARES dataset leads to improved WSD performance in comparison to 
LMMS-SP on the reported test sets, particularly on SE13 and SE15.7

7.2. Uninformed sense matching (USM)

We introduced the USM task in Loureiro & Jorge [61] as a variation on WSD that can more accurately represent the 
extent to which NLMs can associate words or phrases to senses from the WordNet inventory. The crucial difference in 
relation to WSD is that in the USM task we do not use any supplemental information to restrict candidates in the sense 
inventory (compare examples in Table 8 and Table 10). Conveniently, this allows for USM to use the same test sets as WSD. 
As expected, we address USM using the sense profile of the same name, and follow the method described in Section 4.3. In 
this work we evaluate USM from both the sensekey and synset perspective, to provide a clearer account of the impact of 
lexical information on task performance.

7 We expect the annotations in ARES to produce further performance gains for LMMS-SP but do not use this resource due to its large size (13x the 
annotations in SemCor+UWA10).
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Table 10
Example USM instance adapted from the WSD Evaluation Framework [94]. The correct sensekey or synset must 
be predicted, in separate evaluations.

Sentence Gold Sensekey Gold Synset

Eyes that were clear, but also bright with a strange 
intensity, a sort of cold fire burning behind them.

fire%1:12:00:: 06711159n 
(fire9

n)

Table 11
USM results on the ALL test set of the WSD Evaluation Framework [94], at sense and synset-level. Results marked 
with † are obtained from synset embeddings converted from sensekey embeddings.

Model
Sensekeys Synsets

F1 P@5 MRR F1 P@5 MRR

ARES 61.4 84.7 71.8 60.7† 86.5† 71.8†

LMMS1024 [61] 52.2 66.9 59.0 29.4† 53.9† 40.7†

LMMS2048 [61] 34.8 60.3 46.3 32.5† 58.9† 44.5†

LMMS-SPBERT-L 60.8 86.7 72.2 51.0 81.7 64.3
LMMS-SPXLNet-L 60.1 87.3 71.9 51.7 82.7 65.1
LMMS-SPRoBERTa-L 62.2 86.9 73.1 50.2 80.1 63.3
LMMS-SPALBERT-XXL 62.9 87.6 73.7 52.7 81.9 65.5

Table 12
Examples from the WiC training set. Showing two independent instances.

Sentence Pairs Lemma POS Boolean

You must carry your camping gear. 
Sound carries well over water.

carry VERB False

He wore a jock strap with a metal cup. 
Bees filled the waxen cups with honey.

cup NOUN True

7.2.1. Results
Following Loureiro & Camacho-Collados [60], we evaluate performance considering two additional metrics besides F1: 

Precision at 5 (P@5) and Mean Reciprocal Rank (MRR). To our knowledge, ARES [105] is the only other publicly available 
set of full-coverage sense embeddings represented in the space of a Transformer-based NLM, so we also compare LMMS-SP 
against those sense embeddings. Since our prior LMMS sense embeddings and the ARES sense embeddings are released us-
ing sensekey representations, USM synset evaluation requires converting those sensekey embeddings to synset embeddings. 
We perform this conversion by simply averaging sensekey embeddings that belong to the same synset. In Section 8.2 we 
analyze the impact this conversion can have on task performance.

On Table 11 it can be observed that LMMS-SP dramatically improves performance over LMMS on all three metrics con-
sidered. The poor performance of LMMS2048 in comparison to LMMS1024 suggests that concatenating gloss embeddings is 
detrimental to USM performance, particularly on the F1 metric. In this comparison we do not consider LMMS2348 because 
those sense embeddings are concatenated with fastText static embeddings, resulting in 300 dimensions having the same ex-
act distribution for sense embeddings corresponding to identical lemmas. This property of LMMS2348 makes the comparison 
inequitable and diverts from this work’s focus on the intrinsic capabilities of Transformer NLMs.

Interestingly, we find that, when targeting sensekeys, LMMS-SPALBERT-XXL shows best performance on all metrics, and 
ARES (based on BERT-L) only outperforms LMMS-SPBERT-L on the F1 metric. However, when targeting synsets, the additional 
contexts of ARES prove more advantageous, and we do not observe a similar performance gap between sensekeys and 
synset as we do with LMMS-SP, which can be expected considering that the additional contexts of ARES are targeted at the 
synset-level.

7.3. Word-in-context (WiC)

The Word-in-Context [88, WiC] task is designed to assess how context impacts word representations produced by con-
textual NLMs. It is a binary classification task that simply requires determining whether a particular word is used with the 
same meaning or not in a pair of sentences, also given lemma and POS provided in WSD tasks (see Table 12 for examples). 
The dataset is balanced and performance is measured with accuracy.

7.3.1. Solution
In this work, we tackle the WiC task using our proposed sense embeddings following the unsupervised approach from 

Loureiro & Jorge [62], which essentially applies the 1NN method for disambiguating the target word in both sentences and 
checks whether they are equal or not. Even though we also explored a supervised approach in Loureiro & Jorge [62], based 
on Logistic Regression, in this work we focus on the unsupervised approach as its performance is more revealing of the 
inherent representational abilities of NLMs. Given the close relation to disambiguation, we use WSD sense profiles for WiC.
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Table 13
Results (Accuracy) on the test set of the WiC task comparing our unsupervised approach to the state-of-art. Best 
results for each approach reported in bold. Our results were obtained from the Codalab online platform. Results 
marked with * used the SuperGLUE version of the WiC test set, which has minor preprocessing differences.

Method Language Model Sense Embeddings Acc.

Su
pe

rv
is

ed
Fine-Tuning BERT-L [120] - 69.6*
Logistic Reg. BERT-L LMMS2048 [62] 68.1
Fine-Tuning RoBERTa-L [59] - 69.9*
Fine-Tuning KnowBERT [86] - 70.9
Fine-Tuning SenseBERT [54] - 72.1
Fine-Tuning T5 [93] - 76.9*
Fine-Tuning BERT-L ARES [105] 72.2*

Th
re

sh
ol

d

1NN WSD - JBT [81] 53.6
1NN WSD - DeConf [90] 58.7
1NN WSD context2vec [68] - 59.3
1NN WSD - SW2V [65] 58.1
1NN WSD ELMo [84] - 57.7
1NN WSD - LessLex [21] 59.2

U
ns

up
er

vi
se

d 1NN WSD BERT-L ARES (2020) 67.6
1NN WSD BERT-L LMMS2048 [61] 66.3
1NN WSD BERT-L LMMS-SPBERT-L 67.4
1NN WSD XLNet-L LMMS-SPXLNet-L 66.1
1NN WSD RoBERTa-L LMMS-SPRoBERTa-L 67.8
1NN WSD ALBERT-XXL LMMS-SPALBERT-XXL 67.9

7.3.2. Results
WiC is a benchmark NLU task, being part of SuperGLUE [120], therefore most state-of-the-art NLMs have reported results 

for this task. The initial baseline methods proposed with WiC were based on cosine similarity with thresholds learned from 
the validation set.

Most recent solutions, however, involve fine-tuning the NLM (as performed for other sentence classification tasks in 
SuperGLUE) using the training and validation sets provided with WiC. One notable exception is Scarlini et al. [105] which 
proposed a method that leverages ARES sense embeddings to improve the fine-tuning process. As such, on Table 13 we 
compare results from these solutions to our unsupervised LMMS and LMMS-SP, as well as an unsupervised result based on 
the same 1NN approach using the ARES embeddings.

Starting with our unsupervised results, we confirm that LMMS-SPBERT-L surpasses the performance of LMMS2048 (based 
on BERT-L), and once again LMMS-SPALBERT-XXL displays the best performance. Nevertheless, supervised solutions using NLMs 
fine-tuned for this task show best performance overall, particularly T5 [93] which is currently the largest NLM with reported 
results on this task, at over 11B parameters. KnowBERT [86] and SenseBERT [54] are both NLMs based on BERT that have 
been augmented with sense information from WordNet and SemCor, among other resources, showing improved performance 
in comparison to fine-tuning the original BERT-L.

The method used by Scarlini et al. [105] to employ sense embeddings while fine-tuning BERT-L for WiC resulted in a no-
table improvement similar to SenseBERT. In the unsupervised setting, however, we found that ARES embeddings outperform 
LMMS-SPBERT-L, but underperform both LMMS-SPRoBERTa-L and LMMS-SPALBERT-XXL. We expect following the same method to 
assist supervised fine-tuning with LMMS-SP sense embeddings may produce improved results, but consider that experiment 
out of scope for this work.

As for solutions using the threshold method, all reported models substantially underperform unsupervised results using 
any Transformer-based NLM.

7.4. Graded word similarity in context (GWCS)

For evaluating graded contextual similarity, in contrast to the binary contextual similarity assignments of WiC, we address 
SemEval 2020 Task 3: Graded Word Similarity in Context (GWCS) [2]. This task, based on the CoSimLex resource [3], targets 
word pairs used for evaluating distributional semantic models (not necessarily polysemous words) in contexts spanning 
multiple sentences. The task is divided into two sub-tasks derived from human-annotated similarity ratings: 1) predict 
the change in similarity between two different contexts for each word pair; 2) predict the similarity ratings themselves. 
Table 14 shows a single example from GWCS, featuring two contexts each with occurrences of the same pair of words, 
context specific similarity ratings, and the associated similarity change.

7.4.1. Solution
While the sub-tasks are independently evaluated, we employ essentially the same method for both, based on our 

straightforward approach for the WiC task covered in Section 7.3, with minor adjustments to quantify the observed change 
in similarity. Given contexts A and B , we disambiguate target words (each instance’s word pair) in the corresponding con-
texts, and compute sense similarities simA and simB as the cosine similarity between the embeddings of the predicted 
wsd wsd
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Table 14
Example from the practice set of GWCS (single instance). Contexts A and B each have corresponding similarity 
ratings for the same ‘keep’-‘protect’ word pair.

Contexts Sim. Change

A
Tim Drake keeps a memorial for her in his cave hideout underneath Titans

4.44

-0.52

Tower in San Francisco. [...] It is later revealed that Dr. Leslie Thompkins
had faked her death after the gang war in an effort to protect her.

B
Shisa are wards, believed to protect from various evils. When found in

3.92pairs, the shisa on the left traditionally [...] The open mouth to ward off
evil spirits, and the closed mouth to keep good spirits in.

Table 15
Results on both subtasks of SemEval 2020 Task 3. † as of 03/2021, considering 
evaluation and post-evaluation submissions (Users: 1Ferryman, 2Alexa). ARES results 
obtained using the same method as LMMS, only replacing the corresponding sense 
embeddings.

Model Subtask1 Subtask2

Leaderboard Best† 77.41 74.62

ARES [105] 76.9 74.5
LMMS1024 [61] 74.1 74.2
LMMS2048 [61] 75.7 74.5
LMMS-SPBERT-L 76.2 74.4
LMMS-SPXLNet-L 78.7 76.6
LMMS-SPRoBERTa-L 75.7 74.9
LMMS-SPALBERT-XXL 75.2 71.8

senses. Considering that disambiguation may predict the same senses, thus resulting in simA
wsd = simB

wsd for many instances, 
we also compute contextual similarities simA

ctx and simB
ctx as the cosine similarity between the contextual embeddings of the 

target words. Thus, we determine similarity scores specific to context A as simA = 1
2 (simA

wsd + simA
ctx), and similarity scores 

specific to context B as simB = 1
2 (simB

wsd + simB
ctx). These context-specific similarities constitute our solutions to sub-task 

2. We determine the semantic change scores for sub-task 1 trivially as simB − simA . Considering that this solution closely 
follows our solution for WiC, and that word pairs contained in this dataset tend to be closely related, we use the WSD sense 
profile for GWCS.

7.4.2. Results
Performance on sub-task 1 is measured with Pearson Uncentered Correlation between the system’s scores and the aver-

age human annotations, and performance on sub-task 2 is measured with the harmonic mean of the Spearman and Pearson 
correlations between the system’s scores and the average human annotations. On Table 15 we report results using our 
sense embeddings (LMMS and LMMS-SP), using the ARES sense embeddings with our scoring method (and BERT-Large, 
pooling with the sum of last 4 layers), and the best reported results from other task participants (including post-evaluation, 
until 03/2021). Similarly to WiC, the scores for the test sets are hidden from participants, both during evaluation (ended 
03/2020) and post-evaluation periods (extends indefinitely), so all reported results are obtained from the online platform 
used by SemEval after submitting each system’s predictions.

We observe that our straightforward method combining similarity between sense and contextual embeddings is able 
to outperform the solutions of other task participants (Leaderboard Best), most of which also relied on Transformer-based 
NLMs [2]. Interestingly, GWCS shows wide variation in performance from the choice of NLM, with LMMS-SPXLNet-L standing 
out with clearly best results on both sub-tasks.8

7.5. Sense similarity

All the tasks we considered so far (WSD, USM, WiC and GWCS) have evaluated sense embeddings by their utility for 
accurately matching or distinguishing word senses in particular contexts. In this last task, we address intrinsic evaluation of 
sense embeddings, directly comparing distributional similarity between sense pairs against human similarity ratings.

We perform this evaluation using the Sense Identification Dataset [22, SID], which is based on the word pairs (nouns 
only) and human similarity ratings from SemEval-2017 Task 2 [16], with the addition of mapping word pairs to particular 
senses in the BabelNet sense inventory (see examples on Table 16).

8 Complete leaderboard results are available on Appendix A. Additionally, Appendix B reports performance on the Stanford Contextual Word Similarities 
[43] task, which inspired the GWCS and WiC tasks, with similar conclusions.
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Table 16
Two examples of paired synsets with human similarity ratings from the SID dataset. 
Showing synset identifiers after conversion to WordNet (more readable format in 
parenthesis).

Synset 1 Synset 2 Similarity

08570634n (hayfield1
n) 08598301n (grassland1

n) 3.58
03169390n (decoration1

n) 03291741n (envelope2
n) 0.08

Table 17
Performance (Pearson Correlation) on the adapted SID dataset. All reported embeddings feature 
300 dimensions. Embeddings marked with † have been converted from sensekeys. LessLex 
and NASARI embeddings were converted from BabelNet to WordNet using the same mapping 
applied to the SID adaptation.

All
Overlapping

Synset WN Full All Polarized Observed
Embeddings Coverage (n=377) (n=354) (n=182) (n=297)

St
at

ic

fastText [12] � 64.4 63.5 69.3 65.4
NASARIUMBC [17] - 71.6 79.1 74.4
DeConf† [90] 75.1 74.9 80.6 76.9
LessLex [21] 82.5 82.3 85.5 85.1

Co
nt

ex
tu

al

SensEmBERT [104] 66.9 66.8 74.6 69.5
ARES† � 70.6 70.4 80.5 73.3
LMMS2048† [61] � 71.2 72.2 76.2 76.3
LMMS-SPBERT-L � 77.8 77.8 80.4 83.1
LMMS-SPXLNet-L � 79.5 79.6 81.2 84.5
LMMS-SPRoBERTa-L � 74.1 74.2 79.0 80.9
LMMS-SPALBERT-XXL � 77.4 77.2 80.5 81.4

7.5.1. Task adaptation
We convert the BabelNet sense identifiers to synsets from WordNet 3.0 using the mapping provided by Navigli & 

Ponzetto [76]. However, some instances cannot be mapped due to missing entries in WordNet, or, in rare cases, their 
mapping results in the two senses of the pair being equal, leading to a reduction of 492 instances to 377 mapped to Word-
Net. We further split SID into different groups for additional insights. We first separate the 354 pairs for which both senses 
are represented in the related works we compare against (overlapping), considering these are not always complete sets of 
WordNet sense embeddings. Next, we breakdown the overlapping pairs into a set of the most polarized word pairs (i.e., 
similarity ratings ≤ 1 or ≥ 3), and another set containing only pairs with senses that are annotated in SemCor+UWA10 
(observed).

7.5.2. Solution
We use cosine similarity between synset embeddings to correlate with human similarity ratings. Since we are directly 

comparing embeddings of very different dimensionality, we apply truncated SVD to normalize them to 300 dimensions9

(including related work). The senses being compared range from completely unrelated (e.g., polyhedron1
n ; actor1

n) to highly 
related or similar (e.g., actor1

n; actress1
n), so we use USM sense profiles for SID.

7.5.3. Results
Performance on SID is measured with Pearson correlation. For completeness, we report performance of synset embed-

dings that are not based on contextual NLMs, including new results based on fastText embeddings (trained on Common-
Crawl).10 Results for related works are based on sense embeddings provided by the authors, converting sensekeys to synsets 
by averaging the corresponding embeddings whenever required (as in Section 7.2). The inter-annotator agreement on our 
full set (n=377) reaches 87.9, measured as averaged pairwise Pearson correlation of the original SemEval-2017 human simi-
larity scores.

Results for the WordNet-subset of SID are shown on Table 17. As can be observed, LMMS-SP substantially outperforms 
LMMS and related works. As with GWCS, LMMS-SPXLNet-L stands out with clearly best results. While LMMS-SP also out-
performs most non-contextual embeddings, it still underperforms LessLex [21] embeddings, which are based on ensembles 
and learned using BabelNet. We also note that LMMS-SP performs particularly well on the ‘Observed’ set corresponding to 
senses learned from annotated corpora. The performance gap between ARES and LMMS-SPBERT-L suggests that additional 
semi-supervised annotations for more senses may not suffice. Finally, the ‘Polarized’ set seems consistently easier than the 
full set, indicating that the most challenging pairs are those with moderate similarity ratings.

9 We verified that SVD-reduced embeddings always outperform original embeddings.
10 fastText embeddings for a given synset are computed by averaging the word embeddings for each lemma that belongs to the input synset in WordNet.
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Table 18
Impact of pooling operation on task performance. Underline highlights pooling operation that 
performed best for each NLM and task. Bold highlights NLM and pooling operation that per-
formed best for each task. � denotes default choice of LMMS-SP.

Task (Metric) Pooling BERT-L XLNet-L RoBERTa-L ALBERT-XXL

WSD
(F1 on ALL)

Sum-LST4 75.2 56.4 74.8 73.8
SP-WSD � 75.2 74.1 75.2 75.5
SP-USM 72.9 73.4 74.2 74.5

USM
(P@5 on ALL)

Sum-LST4 74.6 65.9 74.6 74.3
SP-WSD 73.6 81.6 83.1 85.7
SP-USM � 86.7 87.3 86.9 87.6

WiC
(ACC on Val.)

Sum-LST4 71.8 61.0 72.1 66.8
SP-WSD � 71.8 67.9 68.8 68.7
SP-USM 67.7 65.0 68.5 67.9

GWCS
(COR on ST2)

Sum-LST4 74.4 54.9 73.3 71.5
SP-WSD � 76.3 78.7 75.7 75.2
SP-USM 73.4 75.4 77.2 75.9

SID
(COR on ALL)

Sum-LST4 77.4 41.1 73.8 72.8
SP-WSD 76.3 77.7 73.5 75.3
SP-USM � 77.8 79.5 74.1 77.4

8. Analysis

In this section, we perform several ablation studies to better understand the impact of individual contributions we have 
introduced in this work’s extension of LMMS. These experiments target the same NLMs and tasks11 that we addressed in 
the previous evaluation section. Our ablation analyses cover the impact of sense profiles (§8.1), UWA annotations (§8.2), 
merging gloss representations (§8.3) and indirect representation of synsets (§8.4). Considering that part-of-speech is an 
important factor in disambiguation (and sense representation), we also report performance per part-of-speech using both 
LMMS and LMMS-SP sense embeddings on WSD and USM tasks (§8.5).

8.1. Choice of sense profiles

On Table 18 we report performance according to the sense profile used for weighted pooling of contextual embeddings 
from NLMs (described in Section 6.2), and using the sum of the last 4 layers (Sum-LST4), as commonly used in related work 
and the original LMMS [61].

Our first conclusion is that Sum-LST4 pooling is only appropriate for particular models and tasks (i.e., WSD and WiC 
w/BERT-L; WiC w/RoBERTa-L), but detrimental for most (specially any task w/XLNet-L; any model for USM). However, our 
recommended choice of sense profile not only appears beneficial for WSD and USM tasks across all models (expected since 
the sense profiles are based on those tasks), but also for WiC, GWCS and SID. In fact, out of 20 model-task combinations, we 
only find 3 exceptions: RoBERTa-L on WiC and GWCS, and ALBERT-XXL on GWCS (to a lesser extent). Moreover, we confirm 
that tasks are sensitive to the choice between SP-WSD and SP-USM, which validate our task-specific recommendations.

8.2. Unambiguous word annotations

In this work we learnt our initial set of sense embeddings (as described in Sections 4.1 and 4.2.1) using SemCor, the 
only source of sense annotations used for LMMS [61], in combination with UWA [60], a set of sense annotations exclusively 
targeting unambiguous words.

On Table 19 we present results showing the impact of UWA on task performance. As noted in Loureiro & Camacho-
Collados [60], the increase in WordNet coverage using UWA allows for disentangling dense clusters that coarsen the 
semantic space when relying on SemCor and network propagation alone. Consequently, we expect UWA to benefit sense 
matching tasks, which is confirmed by our results showing substantial improvements in USM and SID (the two tasks using 
SP-USM). We also find that UWA does not hinder performance on the remaining tasks for most model-task combinations 
(improves in most cases), with the exceptions of GWCS with RoBERTa-L and WiC with ALBERT-XXL (the former is also an 
exception observed in the sense profile ablation on §8.1).

As future work, we will also explore WordNet-independent procedures to discover monosemous words, such as the 
method introduced by Soler & Apidianaki [108], which may lead to further improvements.

11 Due to leaderboard submission limits, ablations for WiC use the validation set.
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Table 19
Impact of sense annotations on task performance. Underline highlights pooling operation that performed best 
for each NLM and task. Bold highlights NLM and pooling operation that performed best for each task. � denotes 
default choice of LMMS-SP.

Task (Metric) Annotations BERT-L XLNet-L RoBERTa-L ALBERT-XXL

WSD
(F1 on ALL)

SemCor 75.0 74.1 75.2 75.4
SemCor+UWA � 75.2 74.1 75.2 75.5

USM
(P@5 on ALL)

SemCor 76.3 76.5 76.1 77.4
SemCor+UWA � 86.7 87.3 86.9 87.6

WiC
(ACC on Val.)

SemCor 71.2 67.1 68.5 69.1
SemCor+UWA � 71.8 67.9 68.8 68.7

GWCS
(COR on ST2)

SemCor 76.1 78.7 76.3 72.7
SemCor+UWA � 76.3 78.7 75.7 75.2

SID
(COR on ALL)

SemCor 72.1 75.2 65.3 73.5
SemCor+UWA � 77.8 79.5 74.1 77.4

Table 20
Impact of merging gloss representations on task performance. Underline highlights pooling operation that per-
formed best for each NLM and task. Bold highlights NLM and pooling operation that performed best for each 
task. � denotes default choice of LMMS-SP.

Task (Metric) Glosses BERT-L XLNet-L RoBERTa-L ALBERT-XXL

WSD
(F1 on ALL)

Without 74.6 74.3 75.3 75.5
Exclusively 57.1 55.2 55.1 54.3
Averaged � 75.2 74.1 75.2 75.5
Concatenated 75.5 74.3 75.3 74.8

USM
(P@5 on ALL)

Without 83.5 83.9 83.7 84.2
Exclusively 46.4 44.6 40.5 43.4
Averaged � 86.7 87.3 86.9 87.6
Concatenated 85.0 85.7 85.8 86.1

WiC
(ACC on Val.)

Without 66.8 64.6 68.7 67.1
Exclusively 66.3 62.2 66.8 64.1
Averaged � 71.8 67.9 68.8 68.7
Concatenated 69.3 66.5 68.5 67.7

GWCS
(COR on ST2)

Without 75.6 77.3 75.0 74.4
Exclusively 75.1 72.9 75.0 68.6
Averaged � 76.3 78.7 75.7 75.2
Concatenated 75.7 77.2 75.8 74.8

SID
(COR on ALL)

Without 69.5 72.5 62.0 68.3
Exclusively 68.3 70.0 65.1 65.9
Averaged � 77.8 79.5 74.1 77.4
Concatenated 76.7 77.9 69.9 73.8

8.3. Merging gloss representations

Another aspect of LMMS-SP that differs from LMMS [61] is merging gloss embeddings by averaging with sense embed-
dings, instead of through concatenation (described in Section 4.2.2).

Results on Table 20 reveal that concatenation only benefits WSD, with minor improvements over averaging. Alternatively, 
averaging shows clear improvements for all other tasks (again, the exception is GWCS w/RoBERTa-L).

We also report performance using exclusively gloss representations, and sense embeddings without gloss information. 
Surprisingly, these two sets of results are very close on WiC, GWCS and SID, showing that unsupervised representations 
learned from glosses can be competitive on particular tasks.

8.4. Learning synsets directly

The SID task, as well as the synset version of USM, require synset-level embeddings. In Section 4.1, we explain that 
LMMS-SP synset embeddings are learned directly from sensekey annotations that are converted to synsets. However, in 
our evaluation we compare LMMS-SP with other works that are only available as sensekey embeddings, so we converted 
these representations into synset embeddings learned as the average of corresponding sensekey embeddings (i.e., learned 
indirectly).
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Table 21
Impact of learning synset representations directly from annotations, or indirectly as the average of corresponding 
sensekey embeddings. Underline highlights pooling operation that performed best for each NLM and task. Bold 
highlights NLM and pooling operation that performed best for each task. � denotes default choice of LMMS-SP.

Task (Metric) Synset Repr. BERT-L XLNet-L RoBERTa-L ALBERT-XXL

USM
(P@5 on ALL)

Indirect 74.5 76.1 77.3 76.3
Direct � 81.7 82.7 80.1 81.9

SID
(COR on ALL)

Indirect 77.3 78.6 73.0 75.5
Direct � 77.8 79.5 74.1 77.4

Table 22
Performance on the combined set of Raganato et al. [94], grouped by part-of-speech. Reporting F1 for WSD and 
P@5 for USM. MFS not applicable for USM.

Model
Nouns Verbs Adjectives Adverbs

WSD USM WSD USM WSD USM WSD USM

MFS 67.6 N/A 49.6 N/A 78.3 N/A 80.5 N/A

LMMS1024 (2019) 75.6 48.2 63.6 65.3 79.8 75.6 85.0 78.6
LMMS2048 (2019) 78.0 54.3 64.0 64.6 80.7 74.0 83.5 77.2

LMMS-SPBERT-L 78.0 87.2 63.0 84.2 80.3 85.3 83.8 96.5
LMMS-SPXLNet-L 76.8 87.5 63.3 86.6 76.9 86.8 85.0 96.5
LMMS-SPRoBERTa-L 78.2 86.9 63.1 86.8 79.2 86.1 84.7 96.2
LMMS-SPALBERT-XXL 77.8 87.3 65.6 86.6 79.1 86.7 84.1 97.1

On Table 21 we compare LMMS-SP embeddings learned directly and indirectly, showing that learning these represen-
tations directly leads to an average improvement across models of 7.3% on USM, and 1.5% on SID. The fact that indirect 
representation of synsets has a reduced impact on SID performance, in comparison to USM, suggests that indirect represen-
tation leads to more intermingled synset embeddings (i.e., harder to rank), but nearly as globally coherent as those learned 
from direct representation.

8.5. Part-of-speech performance

In Loureiro & Jorge [61] we presented an error analysis targeting part-of-speech mismatch between predicted and 
ground-truth senses, which showed that verbs were particularly challenging. In this work, we complement those results 
by reporting performance by part-of-speech, while comparing LMMS [61] with LMMS-SP.

Our results on Table 22 confirm that verbs remain the most challenging part-of-speech to disambiguate correctly, al-
though ALBERT-XXL shows appreciably better verb results than the other NLMs used in this work. Considering ranked USM 
matches, however, we find a much narrower gap between verbs and other parts-of-speech using LMMS-SP, with verbs 
performing comparably with adjectives and nouns, and only BERT-L showing differences larger than 1%.

It is also interesting to note that XLNet-L outperforms or equals ALBERT-XXL on USM for all parts-of-speech with the 
exception of adverbs, providing better insight into the overall performance differences reported in USM evaluation (§7.2), 
where ALBERT-XXL outperforms XLNet-L.

9. Discussion

In this section we discuss the main findings of our work. More specifically, we discuss sense representation at specific 
layers of NLMs (§9.1), differences observed across models and variants (§9.2), and finally, how our sense embeddings may 
benefit downstream tasks (§9.3).

9.1. Layer distribution

Throughout this article we have provided empirical evidence supporting that there is substantial non-monotonic variation 
in the adeptness of specific layers of Transformer-based NLMs for sense representation. This evidence is available from both 
our probing analysis and the improvements in several sense-related tasks obtained from using our proposed sense profiles, 
which are based on non-monotonic pooling from all layers (most clearly shown in Table 3).

The cause for this variation remains elusive, calling for controlled experiments where different NLMs are tested under 
comparable circumstances, particularly with regards to training data and modeling objectives, although such an experimen-
tal setup may be cost-prohibitive for models of this scale. Nevertheless, seeking to better understand this variation, we 
conducted two qualitative experiments targeting representations of the same sentences at different layers.

In our first qualitative experiment, we compared sense similarity at different layers for the same word in context. We 
found some evidence potentially in support of the hypothesis advanced by Voita et al. [117], with the distribution of final 
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Fig. 2. Cosine similarity at specific layers for the word ‘square’ in context and the 3 senses annotated in SemCor, represented with ALBERT-XXL. The 
3 senses of square correspond to the shape, public square (correct, green bar chart) and mathematical operation, in order. Initial layer similarities are 
influenced by the word forms used with each sense in SemCor.

Table 23
Mean silhouette scores for all 20 words of the 10-shot training instances (balanced) of CoarseWSD-20 [63]. Top 
rows report scores for specific layers, bottom rows report scores when pooling the sum of last 4 layers and our 
proposed pooling strategies.

Pooling BERT-L XLNet-L RoBERTa-L ALBERT-XXL

First Layer 0.156 0.064 0.010 0.137
Middle Layer 0.384 0.167 0.180 0.328
Final Layer 0.369 0.049 0.210 0.273

Sum Last 4 0.376 0.088 0.218 0.347
SP-WSD 0.377 0.250 0.203 0.387
SP-USM 0.388 0.255 0.196 0.390

layers resembling the distribution of the first layers moreso than the distribution of middlemost layers, where the difference 
between correct and incorrect senses is more marked (see example in Fig. 2).

We further extended the previous experiment to a cluster-level comparison of the embedding space. For this experiment, 
we focus on the words present in the CoarseWSD-20 dataset [63], both in aggregate for measuring correct sense clustering, 
as well as targeting “spring” and its three distinct senses for visualization. Considering silhouette scores12 [100] and PCA 
visualizations of the embedding space (Table 23 and Fig. 3), we arrived at similar conclusions, namely that final layers 
tend to produce less accurate representations than layers closer to the middle, while the first layer show lowest scores. Our 
proposed layer pooling methods also show generally improved clustering in comparison to the sum of the last four layers. In 
addition, this experiment further confirms the unexpected finding regarding a different pattern of semantic representation 
across layers for XLNet-L, with representations from its final layer showing atypical dispersion.

We leave a more thorough large-scale analysis of this phenomenon for future work, alongside how to appropriately 
account for measuring the granularity of the different senses of a word, among other confounding factors.

9.2. NLM idiosyncrasies

Besides unexpected results regarding the performance of particular layers of NLMs, we also find intriguing differences in 
the patterns of layer performance observed across models, and even variants of the same model. Looking at our results on 
Table 3, we find many intriguing examples of this variation.

For the WSD task, the most striking examples are the differences between BERT-L-UNC-WHL and any other BERT model, 
and the bi-modal distribution for XLNet. For example, XLNet-B exhibited its best-performing layer near the top of the model, 
while the best-performing layer for XLNet-L is in the bottom-half of the model. While results for USM are more consistent, 

12 We use the mean silhouette coefficients of all embeddings for a particular word to measure how well each model and pooling strategy can assign 
embeddings to the correct sense cluster. Silhouette coefficients are based on intra- and nearest-cluster cosine similarities. Low values represent overlapping 
clusters.
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Fig. 3. Visualization of embedding spaces using different pooling strategies. The last two rows correspond to our proposed pooling strategies (see §4.4
and §6). Each point corresponds to an embedding for the word “spring” in context, as provided in the 10-shot set of CoarseWSD-20 [63]. Using PCA for 
dimensionality reduction. Silhouette scores s are computed before reduction.

we also find some peculiarities there, such as XLNet models showing worst-performing layers at the top, and ALBERT-XL 
showing a more biased distribution than other ALBERT variants.

The reasons for these differences in patterns across models and variants are not straightforward, specially considering 
many of these models are trained on similar data and architectures. Still, among several technical differences, we highlight 
the differences in modeling objectives covered in Section 5.1. Out of the 4 the models we considered in this work (see per-
formance summary on Table 24), XLNet is in fact simultaneously the model that appears most distinctive, with particularly 
strong performance on graded similarity tasks, and whose objectives are most different (being the only model not using 
MLM). Another interesting finding is that we obtain best results on WSD, USM and WiC using ALBERT-XXL, which has half 
the layers of the other models, but much larger embedding dimensionality (model details are available in Table 2). As for 
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Table 24
Summary comparison between different NLMs using our LMMS-SP approach.

Model
WSD USM WiC GWCS SID
(F1) (P@5) (ACC) (COR) (COR)

LMMS-SPBERT-L 75.2 86.7 67.4 76.3 77.8
LMMS-SPXLNet-L 74.1 87.3 66.1 78.7 79.5
LMMS-SPRoBERTa-L 75.2 86.9 67.8 75.7 74.1
LMMS-SPALBERT-XXL 75.5 87.6 67.9 75.2 77.4

Fig. 4. Example sentence with each token matched to LMMS-SPALBERT-XXL sense embeddings, presenting synsets for the 5 nearest neighbors, using the 
SP-USM sense profile. Shows direct hypernymy relations (i.e., Is-A), included in WordNet (WN), between matched synsets, as well as hypernymy relations 
shared between more than one matched and unmatched synset (i.e., deducible generalizations, not in top 5 matches). Finally, at the top, we show a VerbNet 
(VN) semantic frame matched to this sentence, highlighting how LMMS-SP enables generalization of argument spans.

differences in variants of the same model (same objectives) we consider the possibility that trivial run-time parameters may 
have an impact on this variation, akin to the unexpected influence of random seeds on fine-tuning BERT models [30].

9.3. Knowledge integration

The ability of matching WordNet synsets to any fragment of text allows downstream applications to easily leverage the 
manually curated relations available on WordNet. At the same time, these sense embeddings can also serve as an entry 
point to many other knowledge bases linked to WordNet, such as the multilingual knowledge graph of BabelNet [76], the 
common-sense triples of ConceptNet [109] or WebChild [110], the semantic frames of VerbNet [106], and even the images of 
ImageNet [101] or Visual Genome [49]. Several recent works have used the symbolic relations expressed in these knowledge 
bases to improve neural solutions to Natural Language Inference [47], Commonsense Reasoning [57], Story Generation [1], 
among others.

As an example of how using LMMS-SP to bridge natural language and symbolic knowledge can be beneficial, in Fig. 4
we demonstrate how these sense embeddings allow for generalization of argument spans, predicted by a semantic parser, 
exploiting WordNet relations between matched synsets. The matches shown in Fig. 4 also illustrate how sense embeddings 
may be used for probing world knowledge encoded in pre-trained NLMs, as already suggested in Loureiro & Jorge [61].
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10. Conclusion

Leveraging neural language models in combination with sense-annotated corpora (and complementary resources such 
as glosses or relations), this work has shown that it is possible to produce sense embeddings applicable beyond mere 
disambiguation, with relevant implications for long-standing challenges in Artificial Intelligence such as symbol grounding.

This extension of Loureiro & Jorge [61] proposes a more principled approach for learning distributional representations of 
word senses using pre-trained NLMs, focusing on state-of-the-art Transformer-based models. From extensive evaluation on 
several sense-related tasks, we demonstrated that the LMMS-SP approach is more effective than prior work at approximating 
precise word sense representations in the same vector space of NLMs.

The broad probing analysis of the many variants of popular NLMs endeavored in this work provides new evidence 
supporting further research on the interplay between pre-training objectives, layer specialization, and model size. The con-
clusions of this probing analysis are indeed expected to be applicable in tasks outside WSD, and for learning representations 
other than sense embeddings, which we leave for future work.

Effectively, there are known limitations to meaning representation based on language modeling objectives alone [6,69]. 
Nonetheless, we believe our work shows there is still much to understand about how to best leverage NLMs for meaning 
representation, in addition to more thoroughly testing the effectiveness of current approaches centered on self-supervision.

Release. This work is accompanied by the release of the following resources: sensekey and synset embeddings with full-
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Appendix A. Full results for SemEval 2020 - Task 3

On Table 25 we report complete leaderboard results for subtasks 1 and 2 of SemEval 2020 Task 3 (including other 
languages besides English), during the evaluation period.

Table 25
Results from the leaderboard of subtasks 1 and 2 of SemEval 2020 Task 3 - Predicting the (Graded) Effect of Context in Word 
Similarity. Rank reported in team names. At the time of this evaluation, we did not use the sense profiles proposed in this 
paper, so our reported results on this table are based on senses embeddings pooled from the last 4 layers of the specified 
models, following Loureiro & Jorge [61].

English Hungarian

Team Sub1 Team Sub2 Team Sub1 Team Sub2

1. Ferryman 0.774 1. MineriaUNAM 0.723 1. N+S 0.740 1. N+S 0.658
2. will_go 0.768 2. LMMSRoBERTa-L 0.720 2. Hitachi 0.681 2. Hitachi 0.616
3. MULTISEM 0.760 3. somaia 0.719 3. InfoMiner 0.754 3. MineriaUNAM 0.613
4. LMMSRoBERTa-L 0.754 4. MULTISEM 0.718 4. Ferryman 0.774 4. LMMSXLMR-L 0.565
5. InfoMiner 0.754 5. InfoMiner 0.715 5. LMMSXLMR-L 0.754 5. InfoMiner 0.545

Finnish Slovenian

Team Sub1 Team Sub2 Team Sub1 Team Sub2

1. will_go 0.772 1. InfoMiner 0.645 1. Hitachi 0.654 1. N+S 0.579
2. Ferryman 0.745 2. N+S 0.611 2. InfoMiner 0.648 2. InfoMiner 0.573
3. N+S 0.726 3. MineriaUNAM 0.597 3. N+S 0.646 3. CitiusNLP 0.538
4. RTM 0.671 4. MULTISEM 0.492 4. CitiusNLP 0.624 4. tthhanh 0.516
11. LMMSXLMR-L 0.360 7. LMMSXLMR-L 0.354 8. LMMSXLMR-L 0.560 9. LMMSXLMR-L 0.483
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Appendix B. Stanford contextual word similarities (SCWS)

On Table 26 we report our results on the Stanford Contextual Word Similarities (SCWS) [43] task. We address this task 
similarly to GWCS (see Section 7.4). Given two words in context, each within an independent sentence, we disambiguate 
both occurrences and score each pair as the average of similarities between corresponding sense and contextual embeddings.

Results on SCWS follow performance on GWCS, with XLNet-L outperforming other NLMs as well as results from related 
works. Analyzing performance by Part-of-Speech (POS), we find that nouns appear most challenging for this task, particularly 
when being compared against other nouns.

Table 26
Results on SCWS (Spearman correlation scores, ρ×100), considering the entire set of pairs (ALL) as well as results 
for subsets pairing particular Parts-of-Speech (with n denoting the number of instances for each subset), similarly 
to Colla et al. [20].

ALL N-N N-V N-A V-V V-A A-A
System (n=2003) (n=1328) (n=140) (n=30) (n=399) (n=9) (n=97)
Huang et al. [43] 65.7 – – – – – –
SensEmbed [45] 62.4 – – – – – –
NASARI [18] – 47.1 – – – – –
DeConf [90] 71.5 – – – – – –
LessLex [20] 69.5 69.2 69.6 82.0 64.1 73.6 63.8
ARES [105] 67.9 66.6 68.6 87.9 67.2 66.7 69.4

BERT-L (SP-WSD) 59.3 56.8 67.4 78.4 59.4 60.0 61.1
XLNet-L (SP-WSD) 73.9 71.6 75.6 81.3 75.8 78.3 76.0
RoBERTa-L (SP-WSD) 63.8 59.1 71.3 66.6 68.7 73.3 66.7
ALBERT-XXL (SP-WSD) 65.9 63.7 69.4 74.9 66.3 75.0 69.5

LMMS-SPBERT-L 64.1 62.3 67.1 82.6 63.5 51.7 68.3
LMMS-SPXLNet-L 75.9 73.7 75.8 81.5 78.0 75.0 79.4
LMMS-SPRoBERTa-L 67.4 63.4 73.9 70.8 71.1 75.0 68.1
LMMS-SPALBERT-XXL 69.9 68.8 72.4 76.4 69.9 66.6 70.9
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