Word Sense Disambiguation: A Unified Evaluation Framework and Empirical Comparison

Alessandro Raganato, José Camacho Collados and Roberto Navigli

Dipartimento di Informatica

Word Sense Disambiguation (WSD)

Given the word in context, find the correct sense:

The mouse ate the cheese.

A mouse consists of an object held in one's hand, with one or more buttons.

International Workshops on Semantic Evaluation

Many evaluation datasets have been constructed for the task:

- Senseval 2 (2001)
- Senseval 3 (2004)
- SemEval 2007
- SemEval 2013
- SemEval 2015

International Workshops on Semantic Evaluation

Many evaluation datasets have been constructed for the task:

- Senseval 2 (2001) WN 1.7
- Senseval 3 (2004) WN 1.7.1
- SemEval 2007 WN 2.1
- SemEval 2013 WN 3.0
- SemEval 2015 WN 3.0

Problem:

 different formats, construction guidelines and sense inventory

Our goal:

- build a unified framework for all-words WSD (training and testing)
- use this evaluation framework to perform a fair quantitative and qualitative empirical comparison

Our goal:

- build a unified framework for all-words WSD (training and testing)
- use this evaluation framework to perform a fair quantitative and qualitative empirical comparison

How:

- standardizing the WSD datasets and training corpora into a unified format
- semi-automatically converting annotations from any dataset to WordNet
 3.0
- preprocessing the datasets by consistently using the same pipeline.

Pipeline for standardizing any given WSD dataset:

Standardizing format:

 convert all datasets to a unified XML scheme, where preprocessing information (e.g. lemma, PoS tag) of a given corpus can be encoded

Pipeline for standardizing any given WSD dataset:

WN version mapping:

- map the sense annotations from its original WordNet version to 3.0
 - carried out semi-automatically (Daude et al., 2003)

Jordi Daude, Lluis Padro, and German Rigau. Validation and tuning of wordnet mapping techniques. In Proceedings of RANLP 2003.

Pipeline for standardizing any given WSD dataset:

Preprocessing:

• use the Stanford coreNLP toolkit for part of speech tagging and lemmatization

Pipeline for standardizing any given WSD dataset:

Semi-automatic verification:

- develop a script to check that the final dataset conforms to the guidelines
- ensure that the sense annotations match the lemma and the PoS tag provided by Stanford CoreNLP

Data - evaluation framework

• Training data:

- SemCor, a manually sense-annotated corpus
- OMSTI (One Million Sense-Tagged Instances), a large annotated corpus, automatically constructed by using an alignment based WSD approach

Data - evaluation framework

• Training data:

- **SemCor**, a manually sense-annotated corpus
- OMSTI (One Million Sense-Tagged Instances), a large annotated corpus, automatically constructed by using an alignment based WSD approach

• Testing data:

- Senseval 2, covers nouns, verbs, adverbs and adjectives
- Senseval 3, covers nouns, verbs, adverbs and adjectives
- SemEval 2007, covers nouns and verbs
- SemEval 2013, covers nouns only
- SemEval 2015, covers nouns, verbs, adverbs and adjectives

• ALL, the concatenation of all five testing data

Statistics - training data

Statistics - testing data

Ambiguity

Statistics - testing data (ALL)

- ALL, the concatenation of all the five evaluation datasets
 - Total test instances: 7.253

Statistics - testing data (ALL)

- ALL, the concatenation of all the five evaluation datasets
 - Total test instances: 7.253

Evaluation

Evaluation: Comparison systems

• Knowledge-based

• Supervised

Evaluation: Comparison systems

• Knowledge-based

- Lesk_extended (Banerjee and Pedersen, 2003)
- Lesk+emb (Basile et al., 2014)
- UKB (Agirre et al., 2014)
- Babelfy (Moro et al., 2014)

Lesk (Lesk, 1986)

Based on the overlap between the definitions of a given sense and the context of the target word. Two configurations:

- Lesk_extended (Banerjee and Pedersen, 2003): it includes related senses and tf-idf for word weighting.
- **Lesk+emb** (Basile et al., 2014): enhanced version of Lesk in which similarity between definitions and the target context is computed via word embeddings.

UKB (Agirre et al., 2014)

Graph-based system which exploits **random walks over a semantic network**, using Personalized PageRank.

It uses the standard WordNet graph plus disambiguated glosses as connections.

UKB (Agirre et al., 2014)

Graph-based system which exploits **random walks over a semantic network**, using Personalized PageRank.

It uses the standard WordNet graph plus disambiguated glosses as connections.

NEW - UKB*: enhanced configuration using sense distributions from SemCor and running Personalized PageRank for each word.

Babelfy (Moro et al., 2014)

Graph-based system that uses **random walks with restart** over a semantic network, creating high-coherence semantic interpretations of the input text.

BabelNet as semantic network. BabelNet provides a large set of connections coming from Wikipedia and other resources.

Evaluation: Comparison systems

• Knowledge-based

- Lesk-extended (Banerjee and Pedersen, 2003)
- Lesk+emb (Basile et al., 2014)
- UKB (Agirre et al., 2014)
- Babelfy (Moro et al., 2014)

• Supervised

- IMS (Zhong and Ng, 2010)
- IMS+emb (lacobacci et al. 2016)
- Context2Vec (Melamud et al., 2016)

Evaluation: Comparison systems (supervised)

IMS (Zhong and Ng, 2010)

SVM classifier over a set of conventional features: surroundings words, PoS tags and local collocations.

Improvements integrating **word embeddings** as an additional feature (Taghipour and Ng, 2015; Rothe and Schütze, 2015; Iacobacci et al. 2016) -> IMS+emb.

Evaluation: Comparison systems (supervised)

Three steps:

- First, a **bidirectional LSTM** is trained on an unlabeled corpus.
- Then, this model is used to learn an output (context) vector for each sense annotation in the sense-annotated training corpus.
- Finally, the sense annotation whose context vector is closer to the target word's context vector is selected as the intended sense.

Training corpus

The automatically-constructed OMSTI helps to improve the results of the supervised systems trained on SemCor only.

Research direction -> (semi)automatic construction of sense-annotated datasets in order to overcome the **knowledge-acquisition bottleneck**.

Knowledge-based vs. Supervised

Supervised systems clearly outperform knowledge-based systems.

Supervised systems seem to better capture **local contexts**:

In sum, at both the federal and **state** government levels at least part of the seemingly irrational behavior voters display in the voting booth may have an exceedingly rational explanation.

Knowledge-based systems

Competitive for nouns, but underperform in other PoS tags.

The Most Common Sense (MCS) baseline is still hard to beat.

Only Babelfy and UKB* manage to outperform this baseline but...

- Babelfy uses the MCS baseline as a back-off strategy.
- The configuration of UKB which outperforms the baseline integrates all the sense distribution from SemCor.

Bias towards the Most Frequent Sense (MFS)

All IMS-based systems answer over 75% of the times with the MFS. Context2Vec is slightly less affected (73.1% on average).

The MFS bias is also present in graph-based systems, confirming the findings of previous studies: Calvo and Gelbukh (2015), Postma et al. (2016).

Low overall performance on verbs

All systems below 58%.

Verbs are extremely fine-grained in WordNet: **10.4 number of senses per verb** on average on all datasets (4.8 in nouns and lower in adjectives and adverbs).

For example, the verb *keep* has 22 meaning in WordNet, 6 of them denoting *possession*.

We presented a **unified evaluation framework for all-words Word Sense Disambiguation**, including standardized training and testing data.

This **eases the task of researchers** to evaluate their systems and ensures a **fair comparison**.

Conclusion

We presented a **unified evaluation framework for all-words Word Sense Disambiguation**, including standardized training and testing data.

This eases the task of researchers to evaluate their systems and ensures a fair comparison.

Two potential research directions based on semisupervised learning:

- Exploiting large amounts of unlabeled corpora for learning accurate word embeddings or training **neural language models**
- (Semi)Automatic construction of high-quality sense-annotated corpora

Conclusion

We presented a **unified evaluation framework for all-words Word Sense Disambiguation**, including standardized training and testing data.

This **eases the task of researchers** to evaluate their systems and ensures a **fair comparison**.

Two potential research directions based on semisupervised learning:

- Exploiting large amounts of unlabeled corpora for learning accurate word embeddings or training **neural language models**
- (Semi)Automatic construction of high-quality sense-annotated corpora

Thank you!

All the data available at

http://lcl.uniroma1.it/wsdeval