

Supervised Distributional Hypernym Discovery via Domain Adaptation

Luis Espinosa-Anke^{1,3}, Jose Camacho-Collados², Claudio Delli Bovi², Horacio Saggion¹ ¹TALN Group, Department of Information and Communication Technologies ²Department of Computer Science, Sapienza University of Rome ³Savanamed {luis.espinosa, horacio.saggion}@upf.edu, {collados,dellibovi}@di.uniroma1.it

Motivation

- → The capacity for *generalization* lies at the core of human understanding.
- → Lexical taxonomies are important resources on which NLP systems rely for detecting generalizations.
- In a taxonomy learning context, the step of hypernym discovery is crucial, and a research topic in itself.
- → There are two main approaches to hypernym discovery: Path/pattern based, and distributional.

Contribution

- I. Break down the training data in knowledge *domains* by using the distributional approach of NASARI (Camacho-Collados et al. 2016).
- II. Train a domain-wise transformation matrix (Mikolov et al. 2013), and use it to discover hypernyms.
- III. Improve the quality of the system by incorporating disambiguated triples coming from Open Information Extraction techniques.

Training

- → Obtain *is-a* sense-level **term-hypernym pairs from Wikidata**.
- → Train a transformation matrix for each domain such that:

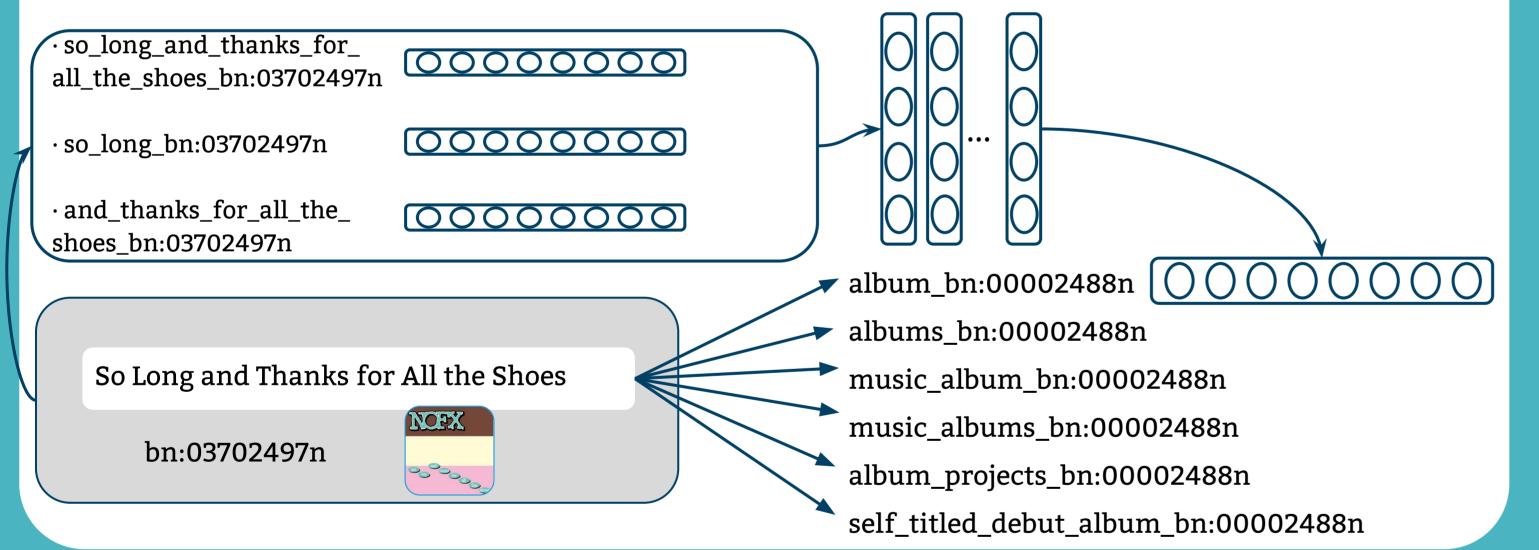
 $\min_{\Psi} \sum_{i=1}^{|\Phi|} \|\Psi t_i - h_i\|^2$

→ **Apply this matrix to an unseen domain-specific term**, so that the resulting vector constitutes the "ideal" hypernym for that term.

Resources

→ **BabelNet** (Navigli and Ponzetto, 2012) - The largest multilingual repository of concepts and entities.

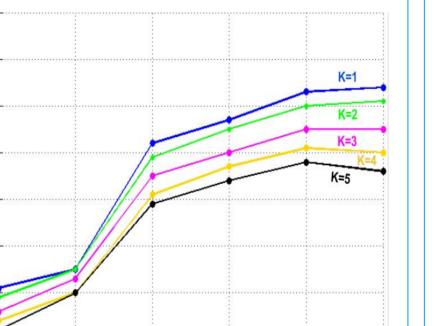
BabelNet


- → SensEmbed (Iacobacci et al. 2015) A sense-level real-valued vector space representation, where each vector corresponds to a BabelNet *synset* and its *lexicalization*.
 ♦ E.g. v(*bass_bn:00008917n*) = [0.2346, -0.756222, 0.123236 ...]
- → KB-Unify (Delli Bovi et al. 2015) An integration of Open Information Extraction systems, disambiguated using BabelNet as reference sense inventory. It contains triples from Patty, WiseNet, NELL and ReVerb.

Conclusion

We perform experiments on hypernym discovery. Traditionally,

Since it may not coincide with any predefined vector, retrieve its nearest neighbours by cosine similarity.


systems are evaluated either on detecting a hypernymic relation in a pair of concepts, or in finding the best hypernym from a predefined and closed terminology. Providing a hypernym *from scratch* and link it to a knowledge resource is more challenging. **Key findings:**

- → Domain clustering is essential. This is consistent with the intuition of Fu et al. (2014).
- → In some domains, feeding OIE triples to the training data improves, but not always.

Hypernym Discovery Evaluation

Train	education			biology			transport		
	MRR	MAP	R-P	MRR	MAP	R-P	MRR	MAP	R-P
5k	0.00	0.00	0.00	0.63	0.63	0.59	0.01	0.01	0.01
15k	0.22	0.22	0.21	0.84	0.72	0.79	0.25	0.23	0.21
25k	0.33	0.32	0.30	0.84	0.83	0.81	0.46	0.43	0.39
25k+KBU _{25k}	0.38	0.36	0.33	0.70	0.63	0.56	0.48	0.45	0.41
100k Random	0.00	0.00	0.00	0.84	0.81	0.77	0.01	0.02	0.02
Baseline	0.10	0.10	0.09	0.58	0.57	0.57	0.29	0.25	0.21

P@K- Transport

Results for other seven

domains available in

the paper.

Extra-Coverage

Manual evaluation **outside of Wikidata**:

- Three pattern-based comparison systems: Yago, WiBi and DefIE.
- Precision lower than
 these approaches but

Data & Code

- BabelNet synsets clustered by domain.
- Wikidata and KBU *isa* branches.
- these approaches but **competitive recall**.
- Interesting follow-up in combining our model with pattern-based systems, in the line of Shwartz et al. (2016).

• Python API

Word, synset

 and sense level.
 Batch predict
 and interactive
 console.

taln.upf.edu/taxoembed

References

[1] Camacho-Collados, J., Pilehvar, M.T., & Navigli, R. (2016). Nasari: Integrating explicit knowledge and corpus statistics for a multilingual representation of concepts and entities. AIJ, 240, 36-64.

[1] Navigli, R., & Ponzetto, S. P. (2012). BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. AIJ, 193, 217-250.

[2] Iacobacci, I., Pilehvar, M. T., & Navigli, R. (2015). SensEmbed: learning sense embeddings for word and relational similarity. In Proceedings of ACL (pp. 95-105).

[3] Delli Bovi, C., Espinosa-Anke, L., & Navigli, R. (2015). Knowledge Base Unification via Sense Embeddings and Disambiguation. In Proceedings of EMNLP (pp. 726-736).

[4] Mikolov, T., Le, Q. V., & Sutskever, I. (2013). Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168.

[5] Fu, R., Guo, J., Qin, B., Che, W., Wang, H., & Liu, T. (2014). Learning Semantic Hierarchies via Word Embeddings. In Proceedings of ACL (pp. 1199-1209).

[6] Shwartz, V. Goldberg, & Dagan, I.. (2016). Improving Hypernymy Detection with an Integrated Path-based and Distributional Method. In Proceedings of ACL (pp. 2389-2398).

