Knowledge-enhanced document embeddings for text classification

Roberta A. Sinoara a,∗, Jose Camacho-Collados b, Rafael G. Rossi c, Roberto Navigli d, Solange O. Rezende a

a Laboratory of Computational Intelligence, Institute of Mathematics and Computer Science, University of São Paulo, P.O. Box 668, 13561-970 São Carlos, Brazil
b School of Computer Science and Informatics, Cardiff University, Queen’s Buildings, S The Parade, Roath, Cardiff, CF24 3AA, United Kingdom
c Federal University of Mato Grosso do Sul - Três Lagoas Campus, Ranulpho Marques Leal, 3484, P.O. Box 210, 79620-080, Três Lagoas, MS, Brazil
d Department of Computer Science, Sapienza University of Rome, Via Regina Elena, 295 - 00161 Roma, Italy

Article history:
Received 17 April 2018
Received in revised form 11 October 2018
Accepted 14 October 2018
Available online 21 October 2018

Keywords:
Semantic representation
Document embeddings
Text classification
Text mining

Abstract
Accurate semantic representation models are essential in text mining applications. For a successful application of the text mining process, the text representation adopted must keep the interesting patterns to be discovered. Although competitive results for automatic text classification may be achieved with traditional bag of words, such representation model cannot provide satisfactory classification performances on hard settings where richer text representations are required. In this paper, we present an approach to represent document collections based on embedded representations of words and word senses. We bring together the power of wordsensedisambiguationandthesemanticrichnessofword- and word-sense embedded vectors to construct embedded representations of document collections. Our approach results in semantically enhanced and low-dimensional representations. We overcome the lack of interpretability of embedded vectors, which is a drawback of this kind of representation, with the use of word sense embedded vectors. Moreover, the experimental evaluation indicates that the use of the proposed representations provides stable classifiers with strong quantitative results, especially in semantically-complex classification scenarios.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Text mining techniques have become essential to support knowledge discovery as the volume and diversity of digital text documents have increased [1–3]. Text mining applications, as well as text sources, are diverse. As examples of text mining applications, we can mention e-mail classification and spam filtering, news and scientific articles organization, financial forecasting, sentiment analysis and opinion mining [4–6]. These applications can generally be modeled as text classification tasks. The objective of text classification is to obtain a classification model that can assign previously known class labels to unlabeled documents.

Text classification can be (i) binary, in which a document is assigned to one of two complementary classes; (ii) multi-class, in which a document is assigned to strictly one among several classes; and (iii) multi-label, in which a document can be assigned to zero, one, or more than one class [6,3]. Multi-class algorithms are the most commonly used in research and real applications nowadays [7,3]. Besides, most multi-label approaches apply problem transformation methods in order to transform a multi-label problem into a multi-class or multiple binary problems [8]. Since transformation methods can affect the classification performance and increase the computational complexity, regardless of the used text representation model and learning algorithm, we focus on the multi-class classification in this article.

Commonly, machine learning algorithms are used to construct a general classification model based on previously labeled documents, i.e., training data. The classification model, also known as classifier, can be used to predict the class label of new textual documents. The performance of a classification model is directly related to the quality of the training data and the quality of the representation model [9,10,3], the latter being the focus of this paper. For this, machine learning algorithms require that the documents (unstructured data) are represented in a structured format, with the structured representation of unstructured data maintaining the patterns to be discovered by machine learning algorithms. Thus, how to represent natural language texts in a format suitable to text classification, e.g., by incorporating text semantics, is an open challenge for the text mining research community.

The most popular document representation model is the vector space model, where each document is represented by a vector whose dimensions correspond to features found in the underlying
corpus. When features are single words, the text representation is called bag-of-words (BOW). The bag-of-words representation is based on independent words and does not express word relationships, text syntax, or semantics. It is a simple document representation model that can be easily constructed and has been shown to provide results which are hard to beat in several applications. However, despite the good results achieved by bags of words, some applications may require a semantically richer text representation to allow the discovery of deeper patterns [2]. The semantic information has an important impact on the document content and can be crucial to differentiate documents which, despite the use of a similar vocabulary, present different ideas about the same subject.

The use of richer text representations is the focus of several studies in text mining [11]. Most studies concentrate on proposing more elaborated features to represent documents in the vector space model. Topic modeling techniques, such as probabilistic latent semantic analysis (PLSA) and Latent Dirichlet Allocation (LDA), can be used to obtain latent semantic features [12–14]. The resultant latent semantic space is a low-dimensional space, in which alternative forms expressing the same concept are projected to a common representation. It latently deals with text semantics since it reduces the noise caused by synonymy and polysemy. Beyond latent semantics, the use of concepts based on external knowledge sources, like WordNet and Wikipedia [15–18], related concepts obtained from social networks [19], and the application of natural language processing methods, such as named entity recognition, part-of-speech tagging, and semantic role labeling, are other approaches to enrich the text representation [20–23].

On the other hand, the field of distributional semantics has led to important advances in semantic representation of linguistic items. Semantic representation techniques aim to model the semantics of linguistic units in a machine-interpretable form. The semantic representation of linguistic items is fundamental to language understanding, especially the representation of word senses [24], which are more precise than the representation of plain wordforms. Word representations have the inability to model polysemy and homonymy, as the different meanings of a word (e.g., the financial and geographic meanings of bank) are conflated into a single representation. Crucially, the individual modeling of the different meanings of a word (i.e., word senses) should result in a more accurate semantic representation of sentences and documents [25].

Having the objective of improving text classification performance through enriching text representations with semantics, we propose two models to represent document collections based on both words and word senses. We bring together the power of word sense disambiguation tools and the availability of pre-trained word and word senses models to construct embedded representations of document collections. The proposed approach has potential to be applied to documents written in several languages since it relies on a multilingual knowledge base and pre-trained word embeddings. Our representations are low-dimensional, which can speed up the learning and the classification process, and they provide stable classifiers with competitive classification performance. The experimental evaluation indicates that the classification performance of the proposed representations is superior, with statistically significant differences to the traditional bag-of-words and to a semantic representation based on Latent Dirichlet Allocation. In summary, the main contributions of our work are the following:

1. Proposal of two straightforward document collection representation models. Our knowledge-enhanced models take advantage of semantic representations of words and word senses in embedded spaces and have the potential to be applied to several languages.

2. Analysis of the proposed knowledge-enhanced document embeddings considering the position of represented documents in the semantic space. This analysis points out some characteristics of represented content in different representation models.

3. Extensive experimental evaluation of the proposed representations in text classification. We applied six machine learning algorithms to five text collections, and two of which have three different classification schemes, with different levels of semantic difficulty.

This paper is organized as follows. In Section 2, we present the main related work on document representation based on latent semantics. A brief description of the linguistic resources related to this work is presented in Section 3. We present our approaches to the semantic representation of document collections in Section 4, including the analysis of our document embeddings considering their semantic spaces. The experimental evaluation of the proposed representations in the text classification task is presented in Section 5 and the concluding remarks in Section 6.
proposed as an alternative approach to word space models, with the advantage of being a computational efficient and incremental method that can be used with any type of context (documents or words).

More recently, neural network methods which embed words into low-dimensional vector spaces directly from text corpora (i.e. word embeddings) have gained attention in distributional semantics [34,35]. A highlight in word embeddings research is the proposal of the Continuous Bag-of-Words and Skip-gram vector learning models of Word2Vec [34]. The potential of word embeddings was certified in Baroni et al. [36], as word embeddings (context-predicting vectors) and traditional models based on co-occurrence counts (context-counting vectors) were compared in different lexical semantics tasks, concluding that word embeddings are superior distributional semantic models. Many works have built on these initial models of Word2Vec. For instance, Levy and Goldberg [37] propose the use of dependency-based contexts to build word embeddings which are more suitable to functional similarity. Other works use annotations on input text, such as supersenses [38] or word senses [39]. Camacho-Collados et al. [40] present an approach, named NASARI, to build word sense vectors in the same space of a pre-trained word embedding space. NASARI embedded vectors cover millions of concepts and named entities defined in the BabelNet sense inventory and, thus, it can be applied to many different languages. Inspired by works on word vector representations, Le and Mikolov [41] propose an approach to learn vectors for larger pieces of texts, named Paragraph Vector, which is shown to be competitive with state-of-the-art methods. Likewise, Joulin et al. [42] proposed a text classification method based on a linear combination of word embeddings (in particular fastText word embeddings [43]) for efficient text classification. However, the extraction of sentence and document embeddings for this latter method is only possible in a supervised way (i.e. specific annotated training data has to be provided).

Motivated by the coverage and multilinguality of NASARI embedded vectors, we propose two unsupervised representation models which take advantage of semantic representations of words and word senses in embedded spaces. In contrast to Paragraph Vector, our approaches do not require huge amounts of data to learn a representation model, since we can simply use pre-trained vectors to obtain knowledge-enhanced document embeddings. The number of available documents for leaning the embedding model can be critical, specially for small text collections; and, on the other hand, there are high-quality pre-trained vectors of words and word senses available. The difference between our approaches and other models based on word embeddings is the use of word sense disambiguation and NASARI embedded vectors, what allows our approach to be applied to several languages at the same time, without having to rely on language-specific vectors. To the best of our knowledge, this is the first work that evaluates traditional and knowledge-enhanced document collection representation models with a wide variety of traditional and state-of-the-art inductive classification algorithms and datasets comprising different levels of semantic complexity and languages.

3. Linguistic resources

The following linguistic resources and algorithms were directly used in the building and analysis of our document representation models.

Word2Vec. Continuous Bag-of-Words and continuous Skip-gram models are neural network architectures, proposed by Mikolov et al. [34] to learn continuous vector representations of words from very large datasets. An implementation of these models was released under the name Word2Vec\(^1\), which becomes an alias to the models themselves. Word2Vec becomes very popular among distributional semantics researches, and their effectiveness were verified in different lexical semantics tasks [36]. In this article, we used the published pre-trained word and phrase model, which was trained on a corpus of about 100 billion words and consists of 300-dimensional vectors for 3 million words and phrases.

BabelNet. BabelNet\(^2\) [44] is a large-scale, multilingual encyclopedic dictionary and semantic network where synsets (main meaning units) are connected via semantic relations. Each synset in BabelNet is associated with a synonym set, which are the senses of the given concept and can be expressed in various languages. BabelNet 3.0, which is the version we used in our experiments, contains 13 million synsets, 380 million semantic relations, and 271 languages. BabelNet consists of the seamless integration of various heterogeneous resources such as WordNet [45], Wikipedia, Wikidata [46], Wiktionary and other lexical resources. For the English language, BabelNet contains over four million synsets with at least one Wikipedia page associated and 117,653 synsets with one WordNet synset associated, from which 99,705 synsets are composed of both a Wikipedia page and a WordNet synset.

Babelfy. Babelfy\(^3\) [47] is a word sense disambiguation and entity linking system which is based on a densest-subgraph algorithm to select high-coherence semantic interpretations of the input text. Babelfy, whose underlying sense inventory is BabelNet, does not make use of sense-annotated data, which enables its application in arbitrary languages. In fact, instead of training or disambiguating individual words within the text, Babelfy exploits BabelNet’s semantic network to connect all the content words in its sense inventory. It specifically makes use of random walks with restart as technique. Babelfy reports state-of-the-art performance in multiple word sense disambiguation and entity linking standard datasets on various languages.

NASARI. NASARI\(^4\) [40] provides vector representations for synsets in BabelNet. In its embedded version, NASARI leverages structural properties from BabelNet, encyclopedic knowledge from Wikipedia and word embeddings trained on text corpora. The word embeddings used for the NASARI vectors considered in this work are the 300-dimensional pre-trained vectors of Word2Vec [34] trained on the Google News corpus. These word embeddings and NASARI vectors share the same semantic vector space, a property that is exploited in this work. NASARI has been proved to be effective in various lexical semantics and natural processing language tasks, being semantic similarity the application more relevant to this work.

4. Document collection representation based on embedded vectors

In this article, we explore the use of embedding models of words and word senses to construct document collection representations. In particular, we propose two document collection

\(^1\) http://code.google.com/archive/p/word2vec/.
\(^2\) http://babelnet.org.
\(^3\) http://babelfy.org.
\(^4\) http://lcl.uniroma1.it/nasari/.
representation models. The first model, named Babel2Vec, is based on Word2Vec vectors. The second one, named NASARI+Babel2Vec, is constructed based on NASARI embedded vectors and Word2Vec. NASARI embedded representation of word senses and Word2Vec word embeddings are used in conjunction in order to take advantage of both sources of knowledge. NASARI embedded vectors have the advantage of representing word senses (concepts and named entities), linked to BabelNet synsets. Thus, given the knowledge extracted from BabelNet, the NASARI embedded representation is semantically richer than Word2Vec representation, which are learned on the basis of text corpora only. However, NASARI has vector representations only for BabelNet synsets whose part-of-speech tag is a noun, therefore semantic information of verbs and adjectives, for instance, could not be represented by NASARI embedded vectors. This limitation can be overcome by joining it to Word2Vec word embeddings, what can be done since NASARI embedded vectors and the pre-trained word and phrase vectors from Word2Vec share the same semantic space.

The use of pre-trained embedded vectors has two main positive effects on document collection representation: (i) fixed dimensionality, as documents are represented by a low-dimensional vector in the embedded space; and (ii) incorporation of external knowledge, as patterns discovered from the huge corpora used to train the embedded vectors of words and word senses are blended with patterns of the document collection itself. Besides, the use of NASARI embedded vectors provides enhanced interpretability for the embedded document vectors. In the next subsections, we describe the construction process of the proposed document collection representations (Section 4.1) and analyze them considering the respective embedding spaces (Section 4.2).

4.1. Construction of the document collection representation

The process of building both representations starts with a disambiguation step. In our experimental evaluation, we disambiguated each document using Babelfy. For a given document, Babelfy returns the disambiguated synsets for its words and phrases. This is an important step since it reveals the concepts and named entities that are represented by the document’s wordforms. During the disambiguation step, when multi-token expressions (n-grams) are identified as a single concept, more than one synset can be returned for each single word of the expression. Most of the times, the more specific synset is the one of interest. Thus, the set of synsets is processed in order to maintain only the most specific synset for n-gram cases. For instance, in what follows the BabelNet synsets identified in the example sentence “The Toshiba Net book operates very well”. are listed together with their definitions:

- Toshiba: “Toshiba is a Japanese multinational conglomerate corporation headquartered in Tokyo, Japan”.
- Net: “A computer network consisting of a worldwide network of computer networks that use the TCP/IP network protocols to facilitate data transmission and exchange”.
- Net book: “Netbooks was a category of small, lightweight, legacy-free, and inexpensive computers that were introduced in 2007”.
- book: “A written work or composition that has been published (printed on pages bound together)”.
- operates: “Perform as expected when applied”.
- very well: “Quite well”.

In this example three BabelNet synsets are returned for the words “Net” and “book”: the synsets for the two individual words and the synset for the multi-token expression “Net book”. When multi-token expressions are identified, the most specific synset, identified by the longest expression, is selected to be in the disambiguated document.

The set of disambiguated documents is used to build the proposed semantic representations, based on embeddings of words and/or word senses. Algorithm 1 presents the construction of NASARI+Babel2Vec document collection representation. Given the word senses (BabelNet synsets) of each document d, the NASARI embedded vector of each synset is retrieved (line 7). If there is not a NASARI embedded representation for the synset, a Word2Vec vector is retrieved (lines 10–15). However, since Word2Vec vectors represent words and not synsets, a target lexicalization (word that represent the synset) must be defined. The target lexicalization is defined as a selected lexicalization in BabelNet. In our case we selected as the target lexicalization the respective document’s fragment or the main lexicalization as provided by BabelNet. After processing all the synsets of d, the document is represented by the centroid of those vectors (line 17). Then, the text collection is represented by a matrix whose rows are the document vectors in a low-dimensional space. The dimensionality is determined by the pre-trained NASARI and Word2Vec vectors, which in our case are 300-dimensional vectors.

The other text collection representation, Babel2Vec, is based on Word2Vec word embeddings only. The construction algorithm of this representation is very similar to Algorithm 1, with the inclusion of the processing of NASARI embedded vectors (lines 6–9). As the words represented in Word2Vec are not disambiguated, we get the target lexicalization of the synset (line 11) in order to retrieve the respective Word2Vec vector (line 12). The target lexicalization was set as the word or expression used in the document itself (for documents written in English) and the main English lexicalization of the synset for documents written in languages other than English. This is an advantage of using Babelly, which is a multilingual disambiguation approach integrated to BabelNet, in the disambiguation step. Therefore, it enables the use of English models to construct the representation of documents written in any of the 271 languages currently supported by BabelNet. In the experimental evaluation presented in this paper, we used the English pre-trained models of both NASARI embedded vectors and Word2Vec.

4.2. Analysis of the proposed document collection representations

Considering the interpretability of the representations, i.e., how one could have an idea of the document’s content when analyzing its structured representation, bag-of-words has an advantage over the embeddings. While features of the traditional bag-of-words representation are normalized words, dimensions of embedded representations are not interpretable. In spite of that, thanks to the disambiguation step and to NASARI embedded vectors, the proposed NASARI+Babel2Vec representation has an enhanced interpretability through its embedded space. We present this property throughout this section by analyzing a document’s nearest

6 In the experimental evaluation, it was used a subset of NASARI embedded vectors containing only concepts related to Wikipedia pages with at least five backlinks from other Wikipedia pages. According to previous analysis, the use of this subset results in very similar document representations when compared to the whole set of NASARI embedded vectors.

7 BabelNet provides several lexicalizations for a single synset, which correspond to different ways to express the same concept (i.e. synonym words). For example, the city New York may be expressed as New York, New York City or Big Apple, among others.
Algorithm 1: Construction of NASARI+Babel2Vec document collection representation

Input: \(D’ \), set of disambiguated documents of text collection \(D \)
\(E \), set of NASARI embedded vectors
\(G \), set of Word2Vec vectors

Output: A matrix \(M_{N \times F} \) representing the text collection \(D’ \), where \(N \) is the number of documents in \(D \) and \(F \) is the dimensionality of vectors in \(E \) and \(G \)

1. \(M \leftarrow \) empty matrix;
2. \(\text{foreach} \ d’ \in D’ \)
 3. \(\text{doc} \leftarrow \) empty vector;
 4. \(n \leftarrow 0; \)
 5. \(\text{foreach} \ s \in d’ \)
 6. \(\text{if} \ s \in E \)
 7. \(\tilde{v} \leftarrow \) vector of synset \(s \) in \(E \);
 8. \(\text{doc} \leftarrow \text{doc} + \tilde{v}; \)
 9. \(n \leftarrow n + 1; \)
 10. \(\text{else if} \ s \in G \)
 11. \(\text{frag} \leftarrow \) target lexicalization of synset \(s \);
 \(\tilde{v} \leftarrow \) vector of \(\text{frag} \) in \(G \);
 12. \(\text{doc} \leftarrow \text{doc} + \tilde{v}; \)
 13. \(n \leftarrow n + 1; \)
 14. \(\text{end} \)
 15. \(\text{end} \)
 16. \(\text{doc} \leftarrow \frac{\text{doc}}{n}; \)
 17. \(\text{append doc to } M; \)
19. \(\text{return } M \)

neighbors, which in case of NASARI+Babel2Vec are word senses and provide more information of document’s meaning than just words.

On the other side, an advantage of the proposed embedded representations over bag-of-words is their low dimensionality, inherited from the word and word sense vectors. The fixed number of dimensions of the embeddings is usually lower than the number of dimensions of a bag-of-words. For document collections, the low-dimensional representation can speed up the learning process and the classification process, mainly for probabilistic-algorithms, decision tree-based algorithms, and proximity-based algorithms when the representation model uses a matrix as data structure. Another important property of the proposed representations is that they incorporate external knowledge without the need of additional training. Pre-trained word and word sense embeddings are built upon the knowledge of huge corpora. In our approach, this knowledge is effortlessly transmitted to the document collection representations and, thus, can enhance patterns hidden in document contents.

In order to analyze the quality of the proposed document representations and their ability to represent document content, we analyzed the representations of a sample of documents, considering their nearest vectors in the embedding spaces. The similarities between vectors were calculated using the cosine similarity measure. Three representation schemes were analyzed: the two proposed representation models (NASARI+Babel2Vec and Babel2Vec) and a variation of NASARI+Babel2Vec based only on NASARI embedded vectors (which we call NASARI2DocVec). The construction process of NASARI2DocVec is similar to Algorithm 1, with the only exclusion of the processing of Word2Vec vectors as a back-off strategy (lines 10–15). For each of these three schemes, we also analyzed the impact of most common senses (MCS) returned by Babelfy, which correspond to the most usual sense given a word according to BabelfNet (e.g., the most common sense of the word Obama is the former president of United States and not a city in Japan also named Obama.). The MCS is returned when the disambiguation score is below a pre-defined threshold, which was 0.6 throughout all our experiments.

The analysis of nearest concepts of a sample of documents (both for English and Portuguese documents) shows that the neighbors are, at some level, related to the main topic of the document in most of the cases. In the following, we present the analysis of two documents of different sizes (Doc A and Doc B), which were randomly extracted from SemEval-2015 Aspect Based Sentiment Analysis text collection [48].

Doc A: "The Toshiba Net book operates very well. The only objection I have is that after you buy it the windows 7 system is a starter and charges for the upgrade."

Doc B: "I’ve had my Macbook Pro since August 2009. Prior to this computer, I owned a PowerBook G4 for 6 years (quite a long time for a laptop). That was my first Apple product and since then I have been incredibly happy with every product of theirs I have bought. My MacBook Pro is no exception. On my PowerBook G4 I would never use the trackpad I would use an external mouse because I didn’t like the trackpad. Since I’ve had this computer I’ve only used the trackpad because it is so nice and smooth. I also like that you can scroll down in a window using two fingers on the trackpad. The display is incredibly bright, much brighter than my PowerBook and very crisp. The computer runs very fast with no problems and the iLife software that comes with it (iPhoto, iMovie, iWeb, iTunes, GarageBand) is all very helpful as well. I also purchased iWork to go with it which has programs for word processing, spreadsheets, and presentations (similar to Microsoft Office). I like those programs better than Office and you can save your files to be completely compatible with the Office programs as well. I would recommend this laptop to anyone looking to get a new laptop who is willing to spend a little more money to get great quality!"

Table 1 presents the synsets identified by Babelfy for the Doc A. The first 8 synsets are very related to the document content and the last two synsets are not. The correct synset for “buy it” would be purchase: Obtain by purchase; acquire by means of a financial transaction (bn:00084331v); and for “charge” would be bill: Demand payment (bn:00083486v). These synsets were returned as MCS, i.e., the disambiguation score for the fragments were low. We can see that, for Doc A, two of the four MCS are the correct disambiguated concepts for the document and the other two are not.

In order to check the impact of MCS in document representations, we analyze the representation schemes with and without MCS. Tables 2 and 3 present the 5–nearest words or word senses of Doc A and Doc B, respectively. The analysis of each representation scheme were performed considering the same space used to build the representation. For NASARI2DocVec document representation, the space of a subset of NASARI embedded vectors, which contains only concepts related to Wikipedia pages with at least five back-links in Wikipedia, was considered. For the Babel2Vec document representation, the corresponding vector space of the Word2Vec pre-trained embeddings is used. Finally, the space resulting from the union of the previous two spaces was considered in the analysis of the NASARI+Babel2Vec document representation.

Doc A refers to some characteristics of a Toshiba netbook. The nearest word senses (Table 2) are related to computers, which is the topic of the document. Besides, even the concept “Vendor lock-in” is close to the document meaning as it is sort of related to the objection of the author of Doc A about the operating system. The document representations generalize document content since concepts mentioned in the text, like “netbook” and “Windows 7” are not among the 5–nearest word senses of the document. Only
Table 1
Disambiguated fragments of Doc A. Synsets with score 0 are the MCS of the fragment.

<table>
<thead>
<tr>
<th>Fragment</th>
<th>BabelNet Synset</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Toshiba</td>
<td>Toshiba:ToshibaisaJapanesemultinationalconglomeratecorporationheadquarteredinTokyo,Japan (bn:03423971n).</td>
<td>1</td>
</tr>
<tr>
<td>2 Netbook</td>
<td>Netbook:Netbooks was a category of small, lightweight, legacy-free, and inexpensive computers that were introduced in 2007 (bn:03754555n).</td>
<td>1</td>
</tr>
<tr>
<td>3 Operates</td>
<td>Operate:Perform as expected when applied (bn:00009629v).</td>
<td>1</td>
</tr>
<tr>
<td>4 Windows 7</td>
<td>Windows 7: Windows 7 is a personal computer operating system developed by Microsoft (bn:02615501n).</td>
<td>1</td>
</tr>
<tr>
<td>5 Upgrade</td>
<td>Upgrade: Software that provides better performance than an earlier version did (bn:000079241n).</td>
<td>0.68</td>
</tr>
<tr>
<td>6 System</td>
<td>System: A system is a set of interacting or interdependent components forming an integrated whole (bn:15125301n).</td>
<td>0.63</td>
</tr>
<tr>
<td>7 Very well</td>
<td>Very well: Quite well (bn:00115380r).</td>
<td>0</td>
</tr>
<tr>
<td>8 Objection</td>
<td>Objection: The act of expressing earnest opposition or protest (bn:00032373n).</td>
<td>0</td>
</tr>
<tr>
<td>9 Buy it</td>
<td>Buy: Be killed or die (bn:00084340v).</td>
<td>0</td>
</tr>
<tr>
<td>10 Charges</td>
<td>Charge: An impetuous rush toward someone or something (bn:00017789n).</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2
5-nearest wordsenses of Doc A representations.

<table>
<thead>
<tr>
<th>Sim.</th>
<th>Word Sense/Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASARI2DocVec — with MCS</td>
<td>System program: A program (as an operating system or compiler or utility program) that controls some aspect of the operation of a computer.</td>
</tr>
<tr>
<td>NASARI2DocVec — without MCS</td>
<td>The same as NASARI2DocVec document representation — with MCS.</td>
</tr>
<tr>
<td>NASARI+Babel2Vec — with MCS</td>
<td>Burroughs MCP: The MCP is the proprietary operating system of the Burroughs small, medium and large systems, including the Unisys Clearpath/MCP systems.</td>
</tr>
<tr>
<td>NASARI+Babel2Vec — without MCS</td>
<td>The word “Toshiba” is among the 5-nearest words of Babel2Vec representation of Doc A. However, it is not so similar according to cosine measure (0.58).</td>
</tr>
</tbody>
</table>

The usage of Word2Vec in conjunction with NASARI embedded vectors impacts the position of the document in the space of embedded vectors. The examples indicate that the 5-nearest word senses of NASARI2DocVec representation tend to be more generic than the neighbors of NASARI+Babel2Vec (representation that includes Word2Vec vectors).

For Doc A, the majority of the nearest word or word senses of NASARI+Babel2Vec are operating systems or are related to operating systems. That is quite related to the document content since the operating system Windows 7 is a concern of the author of Doc A. Although Windows 7 is not among the 5-nearest concepts of Doc A NASARI+Babel2Vec, it is close. The similarity of Doc A NASARI+Babel2Vec representation to the Windows 7 synset is 0.78.

Doc B refers to some characteristics of Macbook Pro and compares some of its aspects to PowerBook aspects. NASARI2DocVec
representation of this document is similar to Apple-related concepts (Table 3). This representation without MCS is similar to The PowerBook synset, an entity mentioned in the document. This entity is not among the 5-nearest concepts of NASARI2DocVec with MCS representation, but their similarity is 0.92, thus they are still close. NASARI+Babel2Vec representation of Doc B is close to more specific concepts, which are, explicitly or implicitly, mentioned in the document: GarageBand, Numbers and Pages, which are part of iWorks. The concept Pages, the nearest concept of NASARI2DocVec without MCS, is not among the 5-nearest synsets of this representation with MCS. However, it is the 6th nearest synset, with a similarity of 0.85. Babel2Vec representation of Doc B is similar to entities mentioned in the document. The representation without MCS is more similar to the products MacBook and PowerBook, whereas the representation with MCS is more similar the product features, as trackpad and iLife Suite.

With regard to the use of MCS when representing documents we noted that document representations with and without MCS are very similar. For instance, Doc A’s NASARI2DocVec representations have the same 5-nearest word senses and are almost identical. In the case of Doc B, relevant concepts that are among the 5-nearest word senses of NASARI2DocVec and NASARI+Babel2Vec representations without MCS are also near to the same representation with MCS. Table 4 presents the cosine similarity between the document representations built with and without MCS, for both documents (Doc A and Doc B).

As previously discussed, the use of MCS can bring some noise to the representation, since the MCS may not be the correct synset for the document. This is the case of “buy it” and “charge” returned to Doc A (Table 1). On the other hand, the discarding of MCS limits

Table 3
5-nearest word senses or words of Doc B representations.

<table>
<thead>
<tr>
<th>Sim.</th>
<th>Word Sense/Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.94</td>
<td>MacBook Pro</td>
</tr>
<tr>
<td>0.94</td>
<td>Apple_iLife_suite</td>
</tr>
<tr>
<td>0.94</td>
<td>Apple II series: The Apple II series is a set of home computers, one of the first highly successful mass-produced microcomputer products, designed primarily by Steve Wozniak, manufactured by Apple Computer and introduced in 1977 with the original Apple II.</td>
</tr>
<tr>
<td>0.93</td>
<td>Desktop metaphor: In computing, the desktop metaphor is an interface metaphor which is a set of unifying concepts used by graphical user interfaces to help users more easily interact with the computer.</td>
</tr>
<tr>
<td>0.93</td>
<td>PowerBook: The PowerBook is a line of Macintosh laptop computers that was designed, manufactured and sold by Apple Computer, Inc. from 1991 to 2006.</td>
</tr>
</tbody>
</table>

Table 4
Cosine similarity between document representations with and without MCS.

<table>
<thead>
<tr>
<th>Representation</th>
<th>Doc A</th>
<th>Doc B</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASARI2DocVec</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>NASARI+Babel2Vec</td>
<td>0.87</td>
<td>0.98</td>
</tr>
<tr>
<td>Babel2Vec</td>
<td>0.85</td>
<td>0.98</td>
</tr>
</tbody>
</table>
the number of identified synsets and can potentially damage the construction of the document representation, especially for short documents. For example, for the dataset of 815 documents used in the experimental evaluation presented in Section 5, the discarding of MCS leads to 15 documents without representation, since no synset was retrieved for these documents. Besides, part of the noise brought by MCS can be filtered using a subset of NASARI embedded vectors containing only concepts related to Wikipedia pages with at least five backlinks in Wikipedia. For instance, only one of MCS was represented in this subset of NASARI vectors in Doc A.

Another factor that may limit the construction of the representations is the quality of the texts. User-generated content, such as social media posts and e-mail messages, may be written in an informal language and contain out-of-vocabulary words and other grammatical issues. Text quality may have an impact on word sense disambiguation and out-of-vocabulary words may not be present on word embedding vectors, what may prevent the construction of embedded document representations.

A similar issue may damage the construction of NASARI2DocVec representation. As there are only NASARI embedded vectors for nouns, NASARI2DocVec representation may not be generated for some documents. This is the case of short opinion documents, which may contain only adjectives, such as “good”, “clean and comfortable” and “terrible”. In the case of the dataset of 815 documents used in the experimental evaluation, 6 documents could not be represented using NASARI2DocVec representation model.

Therefore, considering that (i) discarding of MCS limits the ability of representing short documents; (ii) the use of a subset of NASARI vectors can filter part of noisy synsets; and (iii) NASARI2DocVec representation model is limited to nouns; we carried out our experimental evaluation with NASARI+Babel2Vec and Babel2Vec representations with MCS synsets.

5. Experimental evaluation

The proposed representations, NASARI+Babel2Vec and Babel2Vec, were evaluated in text classification scenarios. In this section, we present the datasets used in the experimental evaluation, the experimental setup and a discussion of the results. Details of the experimental evaluation, including all the datasets and the results of every tested configuration, are available at http://sites.labic.icmc.usp.br/rsinoara/doc-embeddings.

5.1. Text collections

The experimental evaluation was conducted with five text collections: Computer Science Technical Reports (CSTR), Ohsumaed-400, BBC, SemEval-2015 Aspect Based Sentiment Analysis (SE-ABSA15) and BEST sports — Top 4 (BS-Top4), briefly described in the following. Each dataset can be seen as an independent gold standard, related to a specific classification objective.

CSTR. CSTR (Computer Science Technical Reports) collection is composed of 299 abstracts and technical reports published in the Department of Computer Science at University of Rochester from 1991 to 2007 [49]. The documents belong to 4 areas: Systems, Theory, Robotics and Artificial Intelligence.

Ohsumaed-400. Ohsumaed-400 collection is derived from OHSUMED [50,51]. It is composed of medical abstracts from MEDLINE, an online medical information database, categorized according to 23 cardiovascular diseases. We used the version composed of 400 documents from each category.

SE-ABSA15. SE-ABSA15 is a collection composed of reviews of Restaurants, Laptops and Hotels, created for the SemEval-2015 Aspect Based Sentiment Analysis task [48]. This is a high-quality sentiment analysis dataset since it was created following a controlled and well-defined process. The annotations assign review polarities (positive, neutral or negative) to each entity aspect evaluated on the reviews. The same 815 reviews used in [20] were used in this experimental evaluation. Three sub-datasets were leveraged in this collection: (i) SE-product: categorization by product type (Restaurant, Laptop or Hotel); (ii) SE-polarity: categorization by review polarity (positive, negative or neutral), which was determined by the most frequent polarity among the evaluations of product aspects; and (iii) SE-product-polarity: categorization by both product and review polarity.

BS-Top4. BS-Top4 [53] is a collection of sports news written in Portuguese, extracted from BEST sports website [54]. This collection has 283 documents from four different sports: Formula 1, MotoGP, Soccer and Tennis. Besides the website classification by sports, the documents are also labeled considering the performance of Brazilian athletes (“Brazilian won”, “Brazilian did not win”, “No Brazilian cited” or “Not defined”) [10]. Thus, the three datasets for BS-Top4, representing its three possible categorizations, are: (i) BS-topic: categorization by sport; (ii) BS-semantic: categorization by performance of Brazilian athletes; and (iii) BS-topic-semantic: categorization by both sport and athletes’ performance.

Table 5 presents a description and statistics of the text collections and the nine datasets used in this experimental evaluation. The datasets vary in terms of language, number of documents and number of classes. Along with the English text collections, a Portuguese collection was included in this experimental evaluation and is used as a proof of concept of the multilingual aspect of our proposals.

The datasets present distinct levels of semantic difficulty. Regarding the difficulty of text mining applications, Sinoa et al. [55] discuss two different levels of semantic difficulty (or semantic complexity). According to the authors, the first level of semantic difficulty is related to document organization problems that depend mainly on the vocabulary. In this problem, each group of documents has its common terms, and documents can be differentiated mainly by the vocabulary. The second level is related to problems that require more than the vocabulary. Although the authors investigate the levels of semantic complexity in text clustering scenarios, the same discussion can also be applied to multi-class text classification scenarios. The datasets of BS-Top4 collection were investigated in [55], and the authors show that BS-topic is in the first level of semantic complexity and BS-semantic and BS-topic-semantic are in the second level. Based on the nature of the class labels (i.e., the classification objective) of the other datasets used in this work, we can say that CSTR, Ohsumaed-400, BBC and SE-product are in the first level. Their objective, as well as the objective of BS-topic, is a classification by topic.

The other datasets (SE-polarity and SE-product-polarity) do not only deal with topic classification (as they depend on what is positive, neutral and negative), so they are included in the second
level of semantic difficulty. In the problem of sentiment classification, sentiment words are important in the identification of the sentiment expressed in the documents. However, we may consider sentiment classification as an especial case of problems of the second level of semantic difficulty. Although sentiment words are important, they are not enough to solve the problem of sentiment classification [5], what may increase its semantic difficult. As an example, negation words may change the polarity of sentiment words, as in the sentence “The food was not very tasty, but the service was as excellent as I expected”. In this sentence, the positive polarity of “tasty” is changed to negative by the negation word “not”. However, there are also cases where a negation word does not change the polarity of sentiment words, as in “Not only the food was very tasty, but also the service was as excellent as I expected”. Among the challenges of sentiment classification, we can mention: (i) Sentences may contain sentiment shifters, such as negation words, which must be handled; (ii) the same sentiment word can have different polarities (positive or negative) according to the context or application domain; (iii) sentences containing sentiment words may not express sentiments; (iv) the text may express sarcasm; and (v) sentences without sentiment words may contain implicit opinions.

5.2. Experimental setup and evaluation criteria

The representation models were tested in the automatic text classification task. We applied six traditional and state-of-the-art inductive classification algorithms. Four algorithms are taken from the Weka library [57]: Naïve Bayes (NB), J48 (implementation of C4.5 algorithm), Sequential Minimal Optimization (SMO, which is an algorithm for solving optimization problems during the training of SVMs), and IBk (implementation of the k-NN algorithm).

The remaining two algorithms are versions of the IMBHN (Inductive Model based on Bipartite Heterogeneous Networks), which present state-of-the-art classification performance in several settings: IMBHN9 [58] and IMBHN8 [56]. Although these two algorithms are based on networks, the bipartite network is a direct mapping from vector space model representations.

J48 was applied using confidence factors of 0.15, 0.20, 0.25. For SMO, we considered three types of kernel: linear, polynomial (exponent = 2) and radial basis function (gamma = 0.01). The C values considered for each type of kernel were 0, 10\(^{-5}\), 10\(^{-4}\), 10\(^{-3}\), 10\(^{-2}\), 10\(^{-1}\), 10\(^{0}\), 10\(^{1}\), 10\(^{2}\), 10\(^{3}\), 10\(^{4}\). We used IBk without and with a weighted vote scheme, which gives for each of the nearest neighbors a weight vote equal to 1/1, where s is a similarity measure between neighbors. The values of k were 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 35, 45, 55. We used both Euclidean and cosine distances as proximity measure. For IMBHN9 and IMBHN8, we used the error correction rates of 0.01, 0.05, 0.1, 0.5. We defined a maximum number of iterations of 1000 and used the minimum mean squared error of 0.01 as stopping criteria.

We selected three different comparison representation models: bag-of-words (BOW), latent Dirichlet allocation (LDA) and a vanilla Word2Vec. BOW was selected as the baseline since it is a traditional text representation model, usually applied in text mining. It is simple to be generated, based on word frequencies, and presents competitive results in many applications. The other two baselines consider latent semantics and were briefly presented in Section 2.

Features of BOW representations are word stems, which were present in more than one document and were obtained after excluding stopwords and numbers. In order to generate the representation based on LDA, stopwords were removed and we built 100 LDA topic models of 300 topics (the same dimension of the pre-trained embeddings for each text collection). Then, we randomly selected one of these models to represent the text collection. The topic models were built using the LDA method available in the Mallet tool [59].

The third comparison model, which we call Word2Vec15, is a representation model based on Word2Vec word embeddings vectors without the disambiguation step proposed on our Babel2Vec representation model (Section 4). In this Word2Vec representation, each document was represented by the centroid of its word or phrase vectors, using the same Word2Vec pre-trained vectors that were used to build the proposed representation models. With this comparison model we can directly compare the impact of the word sense disambiguation step of our Babel2Vec representation model.

We selected term frequency (TF) as term weighting scheme for the construction of BOW and embedded representations (NASDAQ+Babel2Vec, Babel2Vec and Word2Vec) based on the results

\(^{11}\)Sentiment words are words that are commonly used to express positive or negative sentiment, such as “good”, “terrible” and “awesome”. Sentiment words usually are adjectives or adverbs.

\(^{12}\)The classification experiments were conducted using the text categorization tool developed by Rossi et al. [56].

Table 5
Text collections and datasets description.

<table>
<thead>
<tr>
<th>Text collection</th>
<th>Language</th>
<th>Domain / Text type</th>
<th>#docs</th>
<th>#Words</th>
<th>#Synsets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>min.</td>
<td>mean</td>
</tr>
<tr>
<td>CSTR</td>
<td>English</td>
<td>Technical reports</td>
<td>299</td>
<td>21</td>
<td>432</td>
</tr>
<tr>
<td>Ohsumed-400</td>
<td>English</td>
<td>Medical abstracts</td>
<td>9200</td>
<td>24</td>
<td>432</td>
</tr>
<tr>
<td>BBC</td>
<td>English</td>
<td>News</td>
<td>2225</td>
<td>89</td>
<td>4432</td>
</tr>
<tr>
<td>SE-ABSA15</td>
<td>English</td>
<td>Reviews</td>
<td>815</td>
<td>4</td>
<td>4572</td>
</tr>
<tr>
<td>BS-Top4</td>
<td>Portuguese</td>
<td>News</td>
<td>283</td>
<td>64</td>
<td>457</td>
</tr>
</tbody>
</table>

The possible class label “Formula 1-No Brazilian cited” does not have any document, therefore, BS-topic semantic has only 15 classes (and not 16).
presented by Rossi et al. [58]. The authors compared TF against term frequency-inverse document frequency (TF-IDF) [60] using 14 text collections and six classification algorithms. Their experimental evaluation indicates that most of the algorithms had better results when using TF. As TF presented better results in the traditional bag-of-words approach, we also assumed this weighting scheme when building the embedded document vectors. Besides, TF is the weighting scheme applied in Algorithm 1, as if a term appears twice in the document, the vector of this term will be added twice, and so on. Moreover, many topic extraction methods to generate representation models and classification models consider a generative assumption about the texts based on the raw term frequencies [3].

In order to compare the results of the solutions (combination of text representation and classification models), in this article we considered the \(F_1 \) as a classification performance measure. \(F_1 \) is the harmonic mean of precision and recall given by the following equation:

\[
F_1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}.
\]

Assuming that the label set of a text collection is in the set \(C = \{c_1, \ldots, c_l\} \), precision and recall are computed separately for each class \(c_i \in C \) as a multi-class evaluation problem [61,6]. Precision and recall of a class \(c_i \) are respectively given by:

\[
\text{Precision}_{c_i} = \frac{\text{TP}_{c_i}}{\text{TP}_{c_i} + \text{FP}_{c_i}},
\]

\[
\text{Recall}_{c_i} = \frac{\text{TP}_{c_i}}{\text{TP}_{c_i} + \text{FN}_{c_i}},
\]

where \(\text{TP}_{c_i} \) (True Positive) is the number of test documents correctly assigned to class \(c_i \), \(\text{FP}_{c_i} \) (False Positive) represents the number of test documents from class \(c_j (c_j \neq c_i) \) but assigned to class \(c_i \), and \(\text{FN}_{c_i} \) (False Negative) is the number of test documents from class \(c_j \) but incorrectly assigned to class \(c_j (c_i \neq c_j) \).

In a multi-class scenario, two strategies are used to summarize the results of precision and recall computed for each class: \textbf{micro-averaging} and \textbf{macro-averaging} [61,6]. The micro-averaging strategy performs a sum of the terms of the evaluation measures. Therefore, the precision and recall using the micro-averaging strategy are:

\[
\text{Precision}_{\text{Micro}} = \frac{\sum_{c_i \in C} \text{Precision}_{c_i}}{|C|},
\]

\[
\text{Recall}_{\text{Micro}} = \frac{\sum_{c_i \in C} \text{Recall}_{c_i}}{|C|}.
\]

The macro-averaging strategy performs an average over the evaluations measures considering all classes. Therefore, the precision and recall using the macro-averaging strategy are:

\[
\text{Precision}_{\text{Macro}} = \frac{\sum_{c_i \in C} \text{Precision}_{c_i}}{|C|},
\]

\[
\text{Recall}_{\text{Macro}} = \frac{\sum_{c_i \in C} \text{Recall}_{c_i}}{|C|}.
\]

Micro-averaging scores are dominated by the number of \(\text{TP} \) and consequently large classes dominate small classes in micro-averaging scores. On the other hand, macro-averaging gives equal weight to each class, and consequently, the number of \(\text{TP} \) in small classes are emphasized in macro-averaging scores. Thus, these two strategies are complementary to each other. We denote \(F_1 \) computed through micro-averaging of precision and recall by \(\text{Micro-}F_1 \), and through macro-averaging by \(\text{Macro-}F_1 \).

The classification performance measures were obtained using the 10-fold cross-validation procedure. All algorithms were subjected to the same folds of the cross-validation procedure. The classification performance values were submitted to Friedman test and Nemenyi’s post hoc test with 95% of confidence level to assess if there are statistically significant differences among the text representations [62].

5.3. Results

The execution of the experimental configurations previously described resulted in 104 classification performance results for each tested document representation and dataset. Tables 6 e 7 present, respectively, the best values of \(\text{Micro-}F_1 \) and \(\text{Macro-}F_1 \) obtained by each algorithm among all tested parameters. Considering the best classification performances of each algorithm, the proposed semantic representations presented better results in experiments with the English datasets than with the Portuguese datasets. For the Portuguese text collection (BS-Top4), the best classification performances obtained with BOW was higher than the best performances of semantic representations for most of the tested algorithms. We found few cases whose classification performances of semantic representations were higher than the accuracies of BOW. One of these few cases is NB classifier for BS-topic-semantic dataset for which the use of NASAIR+Babel2Vec representation reached 0.6252 of \(\text{Micro-}F_1 \), while the \(\text{Macro-}F_1 \) using BOW was 0.5725.

For the English text collections, the semantic representations outperformed BOW classification performance in the majority of the tested configurations. The highest differences were presented in the most semantically difficult datasets (SE-polarity and SE-product-polarity). For these datasets, NASAIR+Babel2Vec best \(\text{Micro-}F_1 \) was higher than BOW best \(\text{Micro-}F_1 \) in 7 out of 12 tested cases and it was also higher than the best \(\text{Babel2Vec Micro-}F_1 \) in 7 out of 12 cases. The best \(\text{Micro-}F_1 \) of Babel2Vec outperformed the best accuracy of BOW representation in 8 out of 12 tested cases. Considering \(\text{Macro-}F_1 \) results, the best NASAIR+Babel2Vec results were higher than BOW best result in 8 out of 12 cases and the best Babel2Vec results were higher than BOW best result in 7 out of 12 cases.

The median values of the 936 results of \(\text{Micro-}F_1 \) and \(\text{Macro-}F_1 \) for each text representation model are presented in the last line of Tables 6 e 7, respectively. As most of the used datasets are not balanced, \(\text{Macro-}F_1 \) is an important measure in this experimental evaluation since it is not dominated by large classes. The proposed approaches obtained the highest \(\text{Macro-}F_1 \) median values.

The distributions of the 104 results of \(\text{Micro-}F_1 \) and \(\text{Macro-}F_1 \) for each dataset and representation model are presented in Figs. 1 and 2, respectively. In each figure, the first two lines of box plots correspond to the topic classification datasets (first level of semantic difficulty). Except for Ohsumed-400, the topic classification datasets presented high classification performance. For the datasets of the first line of box plots (BBC, SE-product and BS-topic), the classification performance (both \(\text{Micro-}F_1 \) and \(\text{Macro-}F_1 \)) obtained with the use of semantic representations is close to 1.0, with the exception of a few outliers.

The third lines of box plots (Figs. 1f, 1g, 2f and 2g) correspond to the English semantic classification datasets (second level of semantic difficulty), whose \(\text{Micro-}F_1 \) values are around 0.8 and \(\text{Macro-}F_1 \) values are around 0.5. We can note that the median of the proposed representations (dotted and dash-dotted reference lines)
Table 6
Best Micro-F_1. Values greater than the baseline BOW are highlighted in bold and the best accuracy of each line is underlined. The header line of each dataset corresponds to the best results for the respective dataset. The last line presents the median Micro-F_1, considering the 936 results of each text representation.

<table>
<thead>
<tr>
<th>Text Representation</th>
<th>SMO 0.6573</th>
<th>NB 0.5053</th>
<th>IBk 0.6011</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR+</td>
<td>0.6611</td>
<td>0.6875</td>
<td>0.8264</td>
</tr>
<tr>
<td>IMBHN</td>
<td>0.8147</td>
<td>0.8147</td>
<td>0.7522</td>
</tr>
<tr>
<td>J48</td>
<td>0.3850</td>
<td>0.3850</td>
<td>0.4779</td>
</tr>
<tr>
<td>SMO</td>
<td>0.6538</td>
<td>0.6538</td>
<td>0.6542</td>
</tr>
<tr>
<td>IR+</td>
<td>0.6611</td>
<td>0.6875</td>
<td>0.8264</td>
</tr>
<tr>
<td>IMBHN</td>
<td>0.8147</td>
<td>0.8147</td>
<td>0.7522</td>
</tr>
<tr>
<td>J48</td>
<td>0.3850</td>
<td>0.3850</td>
<td>0.4779</td>
</tr>
<tr>
<td>SMO</td>
<td>0.6538</td>
<td>0.6538</td>
<td>0.6542</td>
</tr>
</tbody>
</table>

Table 7
Best Macro-F_1. Values greater than the baseline BOW are highlighted in bold and the best accuracy of each line is underlined. The header line of each dataset corresponds to the best results for the respective dataset. The last line presents the median Macro-F_1, considering the 936 results of each text representation.

<table>
<thead>
<tr>
<th>Text Representation</th>
<th>SMO 0.8344</th>
<th>NB 0.8066</th>
<th>IBk 0.8066</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR+</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>IMBHN</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>J48</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>SMO</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>IR+</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>IMBHN</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>J48</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>SMO</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
</tbody>
</table>

Median

<table>
<thead>
<tr>
<th>Text Representation</th>
<th>SMO 0.8344</th>
<th>NB 0.8066</th>
<th>IBk 0.8066</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR+</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>IMBHN</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>J48</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>SMO</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>IR+</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>IMBHN</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>J48</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
<tr>
<td>SMO</td>
<td>0.8344</td>
<td>0.8066</td>
<td>0.8066</td>
</tr>
</tbody>
</table>

Median
are higher than the median of the other tested representations in these semantic classification datasets. Besides, in the case of the datasets of Fig. 1a to 1g, the interquartile range of BOW Micro-F_1 results is higher than the interquartile range of the semantic representations. The same occurs to Macro-F_1 (Fig. 2a to 2g).

In the case of the datasets that correspond to semantic classification (second level of semantic difficulty) of Portuguese documents, both Micro-F_1 and Macro-F_1 in these cases are below 0.7 (Figs. 1h, 1i, 2h and 2i). For these cases, the semantic representation results are as spread as the BOW results.

5.4. Analysis

According to the experimental evaluation for Portuguese datasets, the results obtained by enhanced representation models are not higher than the results of BOW. A possible explanation may be the coverage of the linguistic resources for the Portuguese language. Nevertheless, even BOW obtains low classification performances when semantic information is required to discover the class of documents. This fact shows that there is space for improvement on these cases and the strong results obtained for English datasets indicate that document embeddings may be a direction for further works in non-English texts. The experimental evaluation for the Portuguese text collection was performed as a proof of concept and must be further investigated.

As far as the English datasets are concerned, we found that the highest differences in classification performance between BOW and embedded representations were obtained in the more complex datasets, whose classification depends on semantic information (SE-polarity and SE-product-polarity). Looking to the highest Micro-F_1 values (Table 6), Word2Vec model obtained the best results, but the proposed models obtained the highest median values for these scenarios (Figs. 1f and 1g). When considering the highest Macro-F_1 values (Table 7) for the English semantic datasets, Word2Vec model obtained the best result for SE-product-polarity, whereas NASARI+Babel2Vec obtained the best result for SE-polarity. Besides, NASARI+Babel2Vec and Babel2Vec also obtain the highest Macro-F_1 median values for these scenarios (Figs. 2f and 2g).

Tables 8 and 9 present the interquartile range value of Micro-F_1 and Macro-F_1 for each dataset and representation model. Word2Vec presented the lowest interquartile range of Micro-F_1 in four out of nine datasets. However, when considering Macro-F_1 results, Babel2Vec presented the lowest interquartile range in four datasets, including the English semantic datasets (SE-polarity and SE-product-polarity).

We submitted all the 936 experimental evaluation results to Friedman test and Nemenyi’s post hoc test. The test rejected the null hypothesis (the hypothesis that there is no difference between the means) with significance level $\alpha = 0.05$ and p-value < 2.2×10^{-16}. Analyzing Micro-F_1 results, Word2Vec is the first-ranked representation, but with no statistically significant difference to Babel2Vec; whereas in the analysis of Macro-F_1 results, which are not dominated by large classes, Babel2Vec is the first-ranked representation, but with no statistically significant difference to Word2Vec. For both Micro-F_1 and Macro-F_1, NASARI+Babel2Vec is the third-ranked representation and the first three representations present statistically significant differences to the lowest ranked representations, BOW and LDA.

The better results of document embeddings over BOW and LDA indicates that these representations succeed in incorporating knowledge from the huge corpora that the embedded vectors were built from. Patterns discovered from these corpora contribute to the representation of the text collections, whereas BOW and LDA are built based only on the content of the documents themselves.

Other important points to consider are the structure and interpretability of the models. The semantic representations compared in this experimental evaluation have a fixed dimensionality. In our experiments, the semantic representations have 300 dimensions and BOW varies from 1312 to 13511 dimensions. The low dimensionality of the semantic representations can speed up the learning phase and the classification phase of the classification models. One disadvantage of the embedded representations is the interpretability of the features. While features of BOW are words and features of LDA are topics, we do not have an explicit interpretation for the embedded features. Regarding this aspect, NASARI+Babel2Vec has an advantage over the other two tested embedded representations, since in this approach the documents are represented in the same space of word senses (as presented in Section 4.2).

To further analyze the document representation models, we compare them on the document similarity dataset of Lee [63]. Table 10 presents correlation values between human judgments of similarity and the cosine similarities considering different representation models. As baselines we additionally included a representation based on pre-trained fastText vectors [64] and other two knowledge-enhanced document representations such as ADW [65] and ESA [67]. ADW computes the similarity between documents relying on random walks over the WordNet graph, while ESA exploits co-occurrences between Wikipedia concepts for computing similarity. The inter-rater correlation is the measure produced by Lee [63] and corresponds to the Pearson correlation between a randomly selected human rating and the average of the remaining human judgments for each document pair.

LDA using a 300-topic configuration was shown not suitable to Lee’s dataset due to the small size of the text collection. This fact can be verified by the low correlation values for LDA representation model in Table 10. The other models presented better correlation to human judgments. The highest correlation obtained by Lee [63] was 0.6 (Pearson correlation), which was produced by the LSA model using an extended corpus. The best models assessed by Lee using the same 50-document corpus, which was used in

18 ESA results were taken from [66].
our evaluation, achieved correlations close to 0.5. Our Babel2Vec representation achieved the highest correlations, in line with the human inter-rater correlation.

Fig. 3 shows the relationship between human values and the cosine similarity for the most correlated representation models evaluated in this work. We can note that BOW representation model fails to represent the similarities, especially for pairs with human scores between 2 and 4. This happens since concepts about the same subject may be expressed with different words in different documents. Therefore, the similarities tend to be low in this case.

The other representation models attain higher Spearman correlation values. In general, they favor high similarity values, and fail to assess the low similarity of the pairs with low human similarity ratings. The representation model that presents the best correlations to human ratings is our proposed Babel2Vec model, which is consistent with the text classification results. In this case, the identification of relevant instances from BabelNet within the document proved crucial for developing a clean embedding representation. The NASARI+Babel2Vec model achieved a similar score according to Spearman correlation, clearly outperforming all remaining knowledge-based and corpus-based systems.
Fig. 2. Box plots of Macro-F_1 of each dataset. The plot of the representations are presented in the following order: (1) NASARI+Babel2Vec; (2) Babel2Vec; (3) BOW; (4) LDA; (5) Word2Vec. The dotted reference line indicates the median value of NASARI+Babel2Vec representation. The dash-dotted reference line indicates the median value of Babel2Vec representation.

6. Conclusion

In this paper, we proposed two approaches to the semantic representation of document collections, NASARI+Babel2Vec and Babel2Vec, based on word sense disambiguation and embeddings of words and word senses. The representations can be easily built from pre-trained word and word sense embedding vectors. These document representations have the advantage of being projected in the same space of the embeddings and do not require a huge amount of documents to train the models. The proposed representations, as well as representations based on BOW, LDA and Word2Vec without disambiguation, were evaluated in the text classification task. We applied six different machine learning algorithms in nine datasets derived from five text collections, varying the semantic difficulty level of the classification objective and the language. A Portuguese text collection was included as a proof of concept of the multilinguality potential of our approaches.

The analysis of the document vectors indicated that both representations present vectors close to related words and/or word senses. The advantage of NASARI+Babel2Vec over Babel2Vec is that their neighboring word senses prove more meaningful and interpretable. The enhanced interpretability is an important property
of NASARI+Babel2Vec representation. Although it is an embedded representation, thanks to the disambiguation step and the use of NASARI word sense vectors, it is possible to obtain interpretable information about the document using the near word senses as a proxy.

The results of the experimental evaluation in text classification indicate that the proposed approaches present strong classification performances, especially in more complex scenarios of English text collections. Although the comparison model Word2Vec presented highest performances in certain settings, Babel2Vec was the second-ranked representation model for Micro-F₁ and first-ranked model for Macro-F₁. Besides, both proposed approaches presented the highest Macro-F₁ median values, with the added benefits of their interpretability and potential multilinguality. Additionally, a document similarity analysis on dataset of Lee [63] shown that Babel2Vec achieved the highest correlations, outperforming different document representation models and in line with the human inter-rater correlation.

As future work, we intend to further analyze the multilingual aspect of our proposed representations, as well as the impact of word and word sense embeddings in text mining tasks. A first step would be the exploration of multi-view learning. Previous work indicates that semantically enhanced representations can improve solutions based on bag-of-words when applying ensemble multi-view strategies [20]. Thus, we see the combination of bag-of-words and embedded representations as a promising approach, especially for non-English text collections. In this context, an interesting machine learning paradigm to be explored is the Learning Using Privileged Information (LUPI) [68]. The privileged information can be seen as a second view of the data. It provides additional information about the instances, which is potentially useful to complement and refine the knowledge extracted from the original datasets. The privileged information is not explicitly available in the data, requiring additional processing to obtain it. Since the LUPI paradigm assumes that the privileged information may be available for only a fraction of the instances, the use of document embeddings as privileged information may allow the application of the NASARI2DocVec approach, which presented interesting properties (as presented in Section 4.2) but lacked coverage in certain cases.

Acknowledgments

This work was supported by grants #2013/14757-6, #2016/07620-2, and #2016/17078-0, São Paulo Research Foundation (FAPESP). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – Finance Code 001. José Camacho-Collados was supported by a

Table 10

<table>
<thead>
<tr>
<th>Representation model</th>
<th>Correlation</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pearson</td>
<td>Spearman</td>
</tr>
<tr>
<td>NASARI+Babel2Vec</td>
<td>0.53</td>
<td>0.54</td>
</tr>
<tr>
<td>Babel2Vec</td>
<td>0.66</td>
<td>0.55</td>
</tr>
<tr>
<td>BOW</td>
<td>0.56</td>
<td>0.29</td>
</tr>
<tr>
<td>LDA</td>
<td>−0.04</td>
<td>−0.03</td>
</tr>
<tr>
<td>ESA [67]</td>
<td>0.64</td>
<td>0.44</td>
</tr>
<tr>
<td>ADW [65]</td>
<td>0.36</td>
<td>0.28</td>
</tr>
<tr>
<td>Word2Vec</td>
<td>0.56</td>
<td>0.47</td>
</tr>
<tr>
<td>fastText</td>
<td>0.06</td>
<td>0.31</td>
</tr>
<tr>
<td>Inter-rater correlation [63]</td>
<td>0.61</td>
<td>–</td>
</tr>
</tbody>
</table>

Fig. 3. Relationships between human judgments and cosine similarity on Lee's dataset for each document representation model.
Google PhD Fellowship in Natural Language Processing while initially working on this project, and is currently supported by the ERC Starting Grant 637277. Roberto Navigli gratefully acknowledges the support of the ERC Starting Grant MultiJEDI No. 259234 and ERC Consolidator Grant MOUSSE No. 726487.

References

