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Abstract
Understanding relational knowledge plays an
integral part in natural language understanding.
When it comes to pre-trained language models
(PLMs), prior work has been focusing on prob-
ing relational knowledge by filling the blanks
in pre-defined prompts such as "The capital
of France is —". However, these probes may
be affected by the co-occurrence of target rela-
tion words and entities (e.g. "capital", "France"
and "Paris") in the pre-training corpus. In this
work, we extend these probing methodologies
leveraging analogical proportions as a proxy
to probe relational knowledge in transformer-
based PLMs without directly presenting the
desired relation. In particular, we analysed the
ability of PLMs to understand (1) the direction-
ality of a given relation (e.g. Paris-France is
not the same as France-Paris); (2) the ability
to distinguish types on a given relation (both
France and Japan are countries); and (3) the
relation itself (Paris is the capital of France,
but not Rome). Our results show how PLMs
are extremely accurate at (1) and (2), but have
room for improvement for (3). To better under-
stand the reasons behind this behaviour and the
types of mistake made by PLMs, we provide
an extended quantitative analysis.

1 Introduction

A major area of research in NLP in the past years
has been devoted to probing pre-trained language
models (PLMs) to measure the extent of which the
relational/factual knowledge is captured by their
representations (Bouraoui et al., 2020; Jiang et al.,
2020; Wallat et al., 2020). Seeking insight into
the hidden representational space of PLMs, recent
studies have been exploiting the word prediction
capabilities of language models in a cloze-style fill-
the-blank configuration as a more direct method to
probe factual knowledge in PLMs (Petroni et al.,
2019; Wallat et al., 2020). For example, in order to
query for the capital of Paris, one can use the PLM
to fill the blank in a prompt such as ’The capital of

Paris is —’ by predicting the most probable word
as a response.

First, while there have been studies that at-
tempted to find automatic templates that may over-
come the reliance of specific prompts (Shin et al.,
2020; Liu et al., 2021), it has also been shown that
PLMs may fail to understand simple features such
as negation (Kassner and Schütze, 2020). Indeed,
PLMs may even be biased towards the words on
the prompt, and base their answers on this or other
confounds (e.g. co-occurrences) instead of under-
standing the relation itself. For instance, in the
previously-mentioned prompt ’The capital of Paris
is —’, capital is already mentioned in the prompt.

To address this, one possible solution is to rely
on word analogies. In order to study the existence
of a target relation between a pair of words (e.g.
the ’country:capital’ relation between Paris and
France), one could simply put them together with
another pair holding the target relation (e.g. Rome
and Italy) in an analogy sentence (e.g. ’Paris to
France is like Rome to Italy’) and probe the model
in a binary classification setting to check whether
the analogy holds.1. Taking word analogies as the
main reference, our aim is therefore to understand
whether the transformer-based language models
hold sufficient relational information to classify an
analogy as being true or false. While from previous
work we know that PLMs are indeed able to solve
various types of analogies (Ushio et al., 2021b), we
are interested in analyzing three different aspects
for which we propose three probe tasks. In short,
these probes are aimed at understanding the PLMs
capability for (1) making fine-grained distinctions
between concepts within the same types; (2) cap-
turing the directionality of unidirectional relations;
and (3) distinguishing types such as the difference

1This analogy probe is also grounded in research in cog-
nitive psychology, where it has been argued that inferences
made from analogies is a key feature to understand human
creativity (Holyoak et al., 1996).



between capital and country.

2 Methodology

In this section, we describe our methodology to
probe relational knowledge from language models
through word analogies. Given two different tuples
(h1, t1) and (h2, t2), and an analogy template T ,
we can generate an analogy sentence by inserting
the head and tail words of tuples into their respec-
tive positions in T . An analogy sentence holds
with respect to relation R if both tuples used in
the generation process are members of the relation
set R. For instance, the tuples (Paris, France)
and (Rome, Italy) form a correct analogy for the
’country:capital’ relation.

2.1 Probe Evaluation Setting

For our probes, we rely on two distinct settings
which are usually linked to different usages of
the language models, namely supervised and un-
supervised (or zero-shot). The starting point
for these two probe settings is a relation R =
{(h1, t1), (h2, t2), (h3, t3), ...} where (hi, ti) rep-
resents a tuple belonging to the given relation.

Supervised setting. Having the relation set R as
input, we can frame the task as a binary classifica-
tion where the input is a tuple and the output is True
or False depending on whether the tuple belongs
to the relation or not. For example, Paris-France
would be a positive example for the capital-of rela-
tion, while Paris-Rome would be a negative exam-
ple. In turn, R can be easily split between training
and test sets, and negative samples can be obtained
in different ways depending on the actual probe.

Unsupervised setting. In this setting, similarly
obtained negative tuples can be paired with
positive tuples. In this case, given an input pair
(hi, ti) from R, and a pair of two additional tuples
(a positive and a negative example), the task would
consist of identifying the tuple better representing
the relation R. For instance, given Paris-France
and the tuples Rome-Italy and Italy-France as
possible options, the correct answer would be
Rome-Italy.

These two settings (i.e., supervised and unsu-
pervised) provide additional insights in relation
to two distinct theories with respect to relational
knowledge. The supervised binary classification
setting corresponds to the rigid theory in which

Figure 1: Sample positive and negative pairs for the
three proposed probes given Paris-France as input.

relations either hold or not (Beckwith et al., 1991),
present in resources such as WordNet (Miller,
1995). Stemming from cognitive psychology, the
unsupervised comparative evaluation setting re-
flects on the graded assumption in which relations
are a more fluid and it is not always possible to pro-
vide a clear binary distinction (Rosch, 1973). This
comparative setting has been the basis to construct
graded relational datasets (Vulić et al., 2017).

2.2 Probes

We propose three probes to understand how lan-
guage models capture three different aspects within
relational knowledge. The probes mainly construct
negative samples in a different way in order to test
various features. The input in all cases is any given
(hi, ti) in R. Figure 1 lists some sample positive
and negative pairs for the three probes.

Random replacement. There are two ways to
construct negative samples for this probe. A nega-
tive sample in this probe consists of (1) a tuple in
R and an auxiliary tuple (hj , ti) in which hj ̸= hi
(we refer to this probe as random-head); or (hi, tj)
in which ti ̸= tj (random-tail). This probe aims
at understanding how hard it is for the language
model to identify a relation when the types of the
head and tail are maintained.

Reverse direction. For the negative samples, the
auxiliary tuple is simply a random tuple from R in
which the positions of head and tail are reversed
and follows the form (ti, hi). This probe aims at
understanding to what extent PLMs understand the
directionality of a given relation.



Type. For each input (hi, ti), as negative exam-
ples we take any two tuples (hj , hk) (hi ̸= hj ̸=
hk) and (tj , tk) (ti ̸= tj ̸= tk). The goal of this
probe is to test the capability of PLMs to under-
stand the types of a given relation and, specifically,
that different types are required for the relation to
hold.

2.3 Datasets

We opted for the relation sets in Bigger Analogy
Test Set (BATS) dataset (Gladkova et al., 2016).
BATS has been shown to be more robust and com-
plete to other analogy datasets such as Google-
analogies (Mikolov et al., 2013). BATS covers a
collection of 40 different inflectional and deriva-
tional morphology, lexicographic and encyclopedic
relation sets. For each of these sets, we create six
distinct datasets for each setting and probe.2

In the supervised setting, all datasets are initially
split into training and test, with half of the tuples
in each partition. Then, having an initial train/test
partition R of n tuples, we can generate n×(n−1)
positive by pairing each tuple with each other. In
order to keep the dataset balanced, we also generate
the same number of negative samples by following
the probe methodologies described in the previous
subsection. To form instances in the unsupervised
dataset, we simply add a negative example to each
positive instance from the supervised datasets.

2.4 Probe Architecture

For our supervised probe, we opted for RoBERTa-
large and RoBERTa-base (Liu et al., 2019) as the
PLMs in our experiments. In order to feed our
dataset samples to these models, we make use of
the analogy template "What — is to —, — is to —
.", which was shown to be the most reliable general-
purpose prompt for modelling analogies in Ushio
et al. (2021b). We then pull the embedding of the
target words and concatenate them together to form
a larger feature vector which is ultimately fed into
a simple multi-layer perceptron binary classifier.

For the unsupervised setting, we pick the option
tuple that results in an analogy sentence with lowest
pseudo-perplexity when inserted into our analogy
template together with the query tuple. Given the
tokenized form [w1, w2, ..., w|S|] of a sentence S,
pseudo-perplexity is defined as:

2Datasets are available in the supplementary material.

PPPL (S) = exp

−
|S|∑
i=1

logP
(
wi|S\i

) (1)

in which P
(
wi|S\i

)
is the pseudo-likelihood

(Wang and Cho, 2019) and S\i is the tokenized
form of S where the i-th token is replaced with a
<mask> token.

3 Probe Evaluation

In this section, we present the results of our probe
evaluation based on the methodology described
in the previous section. First, we describe the
embedding-based baselines in Section 3.1, and then
we present the experimental results in Section 3.2.

3.1 Baselines
In order to put our results into perspective, we
perform experiments using two embedding-based
baselines using both relation and word embeddings.
As relation embedding model we compare with
RelBERT (Ushio et al., 2021a), a model specifi-
cally trained to extract relation embeddings from
language models. Since RelBERT does not require
the input tuples to be in a context, we can use the
tuples without any analogy template. In the case
of the unsupervised experiments, we extract the
RelBERT relation embeddings of the input and can-
didate tuples, and choose the candidate tuple that
has the embedding with highest cosine similarity to
that of the input tuple. For the supervised setting,
we simply feed the concatenation of the embedding
vectors to a multi-layer perceptron binary classifier.

Similarly, we also report the results of a sim-
ple FastText-based (Bojanowski et al., 2016) static
word embedding baseline. For this baseline, the re-
lation embedding is obtained by simply computing
the difference of individual word embeddings in a
tuple, which is the standard pair encoding method
used in the literature (Weeds et al., 2014; Vylo-
mova et al., 2016; Camacho-Collados et al., 2019).
Once this pair embedding is obtained, the rest of
the methodology is the same as the one described
for RelBERT.

3.2 Results
Table 1 shows our main experimental results. At
first glance, semantic relations appear to be harder
than morphological ones. When analysing model
size, the larger RoBERTa model consistently out-
performs its smaller counterpart, which goes in line



Type Model
Setting

supervised unsupervised
random reverse type random reverse type

ES

RoB-Base 58.33 96.69 90.29 70.33 89.30 68.54
RoB-Large 62.50 98.46 94.44 74.92 90.58 74.14
RelBERT 72.39 98.68 97.38 63.55 93.19 87.30
fastText 61.96 99.71 95.85 58.10 92.40 81.17

LS

RoB-Base 57.77 86.83 79.17 69.81 64.61 54.10
RoB-Large 68.91 86.45 79.91 78.43 68.77 56.85
RelBERT 76.10 82.80 82.09 70.97 68.60 61.46
fastText 62.63 90.20 81.44 51.96 68.06 59.13

DM

RoB-Base 88.40 99.53 96.15 88.20 79.98 77.31
RoB-Large 92.75 99.65 96.34 97.43 94.10 84.39
RelBERT 95.64 97.14 95.73 91.69 89.22 70.20
fastText 77.16 98.80 91.62 70.52 95.98 83.53

IM

RoB-Base 81.81 98.07 93.21 96.83 97.17 87.76
RoB-Large 90.11 99.71 95.44 95.10 98.44 82.08
RelBERT 91.42 98.33 96.87 92.78 92.30 68.05
fastText 75.46 99.80 92.38 82.30 96.81 86.06

All

RoB-Base 71.58 95.28 89.70 81.29 82.76 71.93
RoB-Large 78.57 96.07 91.53 86.47 87.97 74.36
RelBERT 83.89 94.24 93.02 79.75 85.83 71.75
fastText 69.30 97.13 90.32 65.72 88.31 77.47

Table 1: Average accuracy results of comparison mod-
els on our probe datasets grouped by general relation
types (ES: Encyclopedic Semantics, DM: Derivational
Morphology, LS: Lexicographic Semantics, IM: Inflec-
tional Morphology). The last row includes the overall
averaged results for all relations types.

with general language modelling results and in par-
ticular for modelling relations (Petroni et al., 2019).
Regarding the supervised experiments, RoBERTa
performs better in the reverse and type probes com-
pared to random. This indicates the ability of
PLMs (and in general distributional models given
the strong fastText-based results) to capture word
categories and their direction, while having room
for improvement when it comes to capture more
fine-grained distinctions proposed in the random
probe.

In the unsupervised experiments the difference
between relations is less marked in the case of
PLMs. In this setting, except for the random probe,
a simple word embedding baseline such as fastText
prove more reliable. The superior performance on
the reverse and type probes compared to random is
more pronounced in the case of fastText baseline.
This suggests that PLMs can capture more fine-
grained meaning variances compared to static em-
beddings. Moreover, the comparable performance
of fastText to the best performing models in unsu-
pervised reverse and random probes indicates that
contextual information encoded in contextualized
embeddings, as opposed to the type/category infor-
mation, play a less important role in these probing
configurations.

4 Analysis

Since the goal of this paper is to probe PLMs for
relational knowledge, for this extended analysis
we focus on the supervised setting of the plain
RoBERTa-large, which is more in line with most
downstream applications.

Word Frequency First, we estimated the number
of word occurrences in the underlying pre-training
corpora3, and following Chiang et al. (2020) we
took the harmonic mean of occurrences of words in
an output tuple as an estimate of tuple occurrence
frequency. We hypothesized that most of the er-
rors may be produced when the frequency of the
output pair is low, as the RoBERTa may be less
familiar with the words themselves. To this end,
we computed a Kolmogorov-Smirnov for each re-
lation type in which we separated the instances by
correct and wrong decisions made by the model in
the ’random’ probe. For most relation types (over
two thirds), p-values are higher than 0.05 for which
we can conclude that frequency does not play a sig-
nificant role in the performance. Those relation
types where the effect seems more significant are
male-female and adj:comparative.

Breakdown by Relation Table 2 shows a break-
down of the results by relation type. In general,
we can observe poor performance on one/many-to-
many type relations in ’random’ and bidirectional
relations in ’reverse’. This is an interesting sanity
check which we would expect given the nature of
the probes. In order to disentangle the effect that
these relations may have in the final performance,
we also computed the average accuracy excluding
all one/many-to-many and bidirectional relation
types. The main conclusions from Section 3.2 hold
in which the ’random’ probe appears to be harder
than the others, with the average overall perfor-
mance being 68.5 (’random’), 98.2 (’reverse’) and
95.6 (’type’). Another interesting finding is the con-
sistent superior performance on ’reverse’ compared
to ’type’. This is true in particular for the relations
where head and tail words are coming from closer
general categories (e.g. meronyms:part), which in-
dicates that merely relying on word types may not
be enough to capture directionality.

3Wikipedia+BooksCorpus (Zhu et al., 2015) was used as a
proxy to get word frequencies. This was part of the full corpus
where RoBERTa was trained on, which was not available.



Relation Semantic
random reverse type

E
nc

yc
lo

pe
di

c
Se

m
an

tic
s male : female 73.86 95.90 90.02

name : nationality 68.21 100 99.20
country : language 67.25 100 98.68
animal : sound 52.72∗ 98.94 90.88
UK_city : county 59.50 100 95.42
animal : shelter 51.72∗ 96.82 90.71
things : color 52.91∗ 99.98 98.69
animal : young 55.62∗ 96.78 89.80
name : occupation 64.30 100 99.35
country : capital 77.85 99.15 90.85

L
ex

ic
og

ra
ph

ic
Se

m
an

tic
s meronyms : part 60.36∗ 92.35 78.06

antonyms : binary 69.72∗ 56.90† 59.39
synonyms : exact 69.30∗ 70.14† 66.53
hyponyms : misc 63.43∗ 92.69 85.43
antonyms : gradable 74.61∗ 90.00 81.41
meronyms : member 67.66∗ 89.18 77.06
hypernyms : misc 56.23∗ 99.35 96.49
meronyms : substance 59.18∗ 87.86 77.14
synonyms : intensity 71.12∗ 86.02 78.43
hypernyms : animals 47.50∗ 99.88 97.69

Relation Morphological
random reverse type

D
er

iv
at

io
na

lM
or

ph
ol

og
y re+verb_reg 92.88 97.50 94.08

verb+ment_irreg 95.85 100 94.92
adj+ness_reg 96.12 100 97.83
verb+tion_irreg 96.90 100 98.77
verb+able_reg 92.19 100 97.31
noun+less_reg 90.31 100 98.46
adj+ly_reg 97.04 100 98.50
un+adj_reg 97.54 100 98.67
verb+er_irreg 90.79 99.83 94.00
over+adj_reg 97.48 100 99.16

In
fle

ct
io

na
lM

or
ph

ol
og

y verb_inf : Ving 97.38 99.92 99.17
verb_Ving : 3pSg 94.08 99.50 95.50
verb_inf : Ved 96.67 100 93.75
verb_inf : 3pSg 92.54 100 92.83
noun : plural_reg 98.83 100 93.25
noun : plural_irreg 96.63 98.00 89.92
verb_3pSg : Ved 95.75 100 96.33
verb_Ving : Ved 88.96 99.83 98.08
adj : superlative 92.75 100 97.83
adj : comparative 94.75 100 95.92

Table 2: RoBERTa-large results grouped by relation type (supervised setting). The results of one/many-to-many
relations on the random probe and bidirectional relations on the reverse probe are marked by ∗ and †, respectively.

5 Conclusion

In this paper, we have presented three probes to
understand to what extent PLMs (or any model in
general) understand different aspects of the rela-
tions. In general, the ’random’ probe proves the
most challenging for PLMs, which is aimed at cap-
turing some fine-grained information between the
different types in a relation. In contrast, these mod-
els can accurately capture the aspects related to
directionality and the word categories (or types)
involved in a relation. When investigating the rea-
sons of this discrepancy, we did not find a clear
correlation between word frequency and perfor-
mance for the ’random’ probe, except for specific
relation types. In general, however, based on our
unsupervised experiments, PLMs seem to be bet-
ter equipped to solve this probe when comparing
between different pairs, even without task-specific
training data.

6 Limitations

Our experiments are limited in various respects.
First, the only language analysed is English, which
limits the conclusions that can be taken with respect
to other languages, especially those structurally dif-
ferent and from different families. Second, our
experiments are based on a limited number of both

models (which can additionally vary in size with
potentially different conclusions) and configura-
tions/prompts. While we follow standard practice,
there are potentially configurations that have not
been explored and could alter the significant of the
results. Third, word analogies have been shown
by previous research to be prone to external biases
or confounding factors that can alter the results
(Linzen, 2016; Gladkova et al., 2016; Nissim et al.,
2020). We minimized this impact by proposing
clear binary classification and comparative tasks,
instead of the usual predictive framing in word
analogies. Fourth, the data utilised corresponds to
a single dataset, i.e. BATS. While this dataset was
constructed so a wide variety of relations are cov-
ered, these are still limited in number (40) and bi-
ased towards certain categories. All in all, our study
can be considered to be a first attempt to probe re-
lational knowledge through word analogies, which
appears to be a promising area for future work.
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