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ABSTRACT
Embeddings have been one of the dominating buzzwords since the early 2010s for
Natural Language Processing (NLP). Encoding information into a low-dimensional
vector representation, which is easily integrable in modern machine learning algo-
rithms, has played a central role in the development in NLP. Embedding techniques
initially focused on words but the attention soon started to shift to other forms: from
graph structures, such as knowledge bases, to other types of textual content, such as
sentences and documents.

This book provides a high level synthesis of the main embedding techniques
in NLP, in the broad sense. The book starts by explaining conventional word vector
space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to
other types of embeddings, such as word sense, sentence and document, and graph
embeddings. We also provide an overview on the status of the recent development
in contextualized representations (e.g., ELMo, BERT) and explain their potential in
NLP.

Throughout the book the reader can find both essential information for un-
derstanding a certain topic from scratch, and an in-breadth overview of the most
successful techniques developed in the literature.
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C H A P T E R 1

Introduction
Artificial Intelligence (AI) has undoubtedly been one of the most important buz-
zwords over the past years. The goal in AI is to design algorithms that transform com-
puters into “intelligent” agents. By intelligence here we do not necessarily mean an
extraordinary level of smartness shown by superhuman; it rather often involves very
basic problems that humans solve very frequently in their day-to-day life. This can
be as simple as recognizing faces in an image, driving a car, playing a board game, or
reading (and understanding) an article in a newspaper. The intelligent behaviour ex-
hibited by humans when “reading” is one of the main goals for a subfield of AI called
Natural Language Processing (NLP). Natural language1 is one of the most complex
tools used by humans for a wide range of reasons, for instance to communicate with
others, to express thoughts, feelings and ideas, to ask questions, or to give instruc-
tions. Therefore, it is crucial for computers to possess the ability to use the same tool
in order to effectively interact with humans.

From one view, NLP can be divided into two broad subfields: Natural Language
Understanding (NLU) and Natural Language Generation (NLG). NLU deals with un-
derstanding the meaning of human language, usually expressed as a piece of text.2

For instance, when a Question Answering (QA3) system is asked “do penguins fly?”,
the very first step is for it to understand the question, which in turn depends on the
meaning of penguin and fly, and their composition. There are many challenges that
make NLU an AI-hard problem:

• Ambiguity. One of the most important difficulties with human language lies in
its ambiguous nature. Ambiguity can arise at different levels:

– Lexical ambiguity. Words can simultaneously belong to multiple syntac-
tic classes (parts of speech). For instance, fly can be a noun as well as a
verb. But, more importantly, a word in a specific syntactic class can have
multiple associated meanings (i.e., “senses”). For instance, the verb fly can
refer to multiple meanings, including “travelling through the air” which is

1Human language is referred to as “natural”, in contrast to programming or other artificial languages.
2The process of transcribing an utterance, i.e., converting speech to text, is the objective in Speech Processing,
another subfield of AI.

3QA is one of the applications of NLP which deals with designing systems that automatically answer questions
posed by humans in a natural language.
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the intendedmeaning in the above example, or “operating an airplane” as in
“the pilot flew to Cuba” or “move quickly or suddenly” as in “he flew about
the place”.4 We will talk more about “senses” and how to model them in
Chapter 5.

– Syntactic ambiguity. A sentence could be parsed syntactically in multiple
ways. For instance, in the sentence “I saw aman on the hill with binoculars”,
we can attach binoculars to either I or to theman. As a result, different in-
terpretations can be made depending on the choice of attachment. Syntac-
tic ambiguity can also arise from conjunctions. For example, in “Avocado
salad with cheese”, is cheese a part of salad or separate from that?

– Metonymic ambiguity.Metonymy is the substitution of a concept, phrase
or word being meant with a semantically related one. For instance, in
“Cambridge voted to stay in the EU”, it is definitely the people of Cam-
bridge who voted and not the city itself.

– Anaphoric ambiguity. This type of ambiguity concerns the interpretation
of pronouns. For instance, in “I have a laptop but recently bought a new
one. I am going to give it away.”, what does it refer to?

• Common sense knowledge. Addressing many of the ambiguities requires
something that is not explicitly encoded in the context; it needs world knowl-
edge or some reasoning. For instance, in the example for anaphoric ambiguity
it is easy for a person with background knowledge to attach it to the old laptop.
Referential ambiguities that need background knowledge for resolution is the
target forWinograd Schema Challenge [Levesque et al., 2012] which is deemed
to be alternative to the Turing Test for machine intelligence. Similarly, it would
be easy for humans to identify the intended meaning of mouse in “I ordered a
mouse fromAmazon” given their background knowledge from themarketplace.

• Figurative language. Idioms such as “fingers crossed” and “all ears” and sar-
casm are forms of figurative language that are extensively used by humans in
both conversational and written form. Given that the meaning behind these ex-
pressions are not usually directly achievable from their constituent words, they
pose a serious challenge for language understanding algorithms.

Many of the applications in NLP require addressing one or more of the above
challenges. For instance, Machine Translation often requires extensive handling of
different types of ambiguity to be able to transform meaning from a language to an-
other one, with both having their own implicit ambiguities. Similarly, Question An-
swering not only has to deal with ambiguities but also sometimes requires a grasp of
4Definitions from WordNet (more about this lexical resource in Chapter 2). WordNet 3.0 lists 14 meanings
(senses) for the verb fly.
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background common sense knowledge for making inference about facts and answer-
ing questions. Also, there are many NLP tasks that are targeted at the above research
challenges in order to pinpoint the research efforts to specific areas that need more
attention. For instance, Word Sense Disambiguation deals with identifying the in-
tended meaning of a word in a given context, coreference resolution is focused on
resolving anaphoric ambiguity, and semantic similarity measurement measure the
ability of models in modeling the semantics of words or longer pieces of texts.

NLG can be considered as the opposite of NLU: the goal is for a computer
to generate text, or in other words to “talk” to humans through natural language,
either to verbalise an idea or meaning, or to provide a response. NLG is difficult for
several reasons including massive vocabulary size from which the computer has to
pick specific words to convey the idea, the properties of natural language that allow
dynamic word order, and for the need for fluency and accordance with grammar
of the target language. Many of the NLP applications involve generation, such as
Question Answering, text summarization, and conversational AI.

Semantic representation, the topic of this book, lies at the core of most NLP
models, from understanding to generation. Therefore, the inherent semantic rep-
resentation is a crucial playmaker in the performance of downstream applications.
In the following sections we will talk more about semantic representation. Most of
the works discussed in this book deal with the English language. Therefore, some
conclusions may or may not generalize to other types of language. While acknowl-
edging this limitation, we have also attempted to refer to other languages and their
challenges in some chapters and sections, to let the reader better understand the
generalization of some of the points addressed in the book.

1.1 SEMANTIC REPRESENTATION

Imagine the word “desk”. When stored on a computer, this word is nothing but a se-
quence of four characters “d”, “e”, “s”, and “k”. But computers only understand zeros
and ones. Hence, each character has to be stored as a pattern of bits. The number
of bits depends on the encoding. For instance, the extended ASCII needs 8 bits for
storing each character. Therefore, the word “desk” is represented as a sequence of
32 zeros and ones according to this encoding.5. A five-character word, such as “ta-
ble”, will get a 40-bit long representation.6. This approach is not a favorable way of
representing the semantics of words, due to the following limitations:

1. The representation cannot incorporate semantic information of words, e.g.,
the semantically similar words “table” and “desk” (or even synonymous words

5ASCII encoding for “desk”: 01100100 01100101 01110011 01101011
6ASCII encoding for “table”: 01110100 01100001 01100010 01101100 01100101
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Figure 1.1: A toy vocabulary of ten words with their corresponding one-hot repre-
sentations.

“noon” and “midday”) will have totally different representations. We are ideally
looking for a representation that can encode semantics of words.

2. The representation is character-wise. Therefore, the size of the representation
depends on the length of the words (number of characters they have). The vari-
able size is an unwanted property which further complicates the comparison
of representations of different words. In fact, it is not straightforward to inte-
grate these variable-sized representations into machine learning models, which
generally “understand” feature-based representations.

1.2 ONE-HOT REPRESENTATION

We can address the variable-size issue of character-level representations by directly
representing words rather than characters. Imagine an ASCII-like encoding that in-
stead of mapping characters to 8-bit binary representations, it maps words to distinct
fixed-sized patterns of zeros and ones. This is the idea behind one-hot representa-
tion which is the simplest form of word representation. Assume we have 100 words
in a vocabulary and we would like to have them as one-hot representations. First,
we associate an index (between 1 to 100) to each word. Then, each word is repre-
sented as a 100-dimension array-like representation, in which all the dimensions are
zero except for the one corresponding to its index, which is set to one (therefore the
name “one-hot” encoding). Note that, one-hot encoding is different from our earlier
ASCII-like representation in that it is highly sparse, i.e., it contains only one single 1
and the rest are zero. Figure 1.1 shows a toy example with a vocabulary of 10 words
along with their indices (left) and one-hot representations (right). Despite its sim-
plicity, one-hot encoding constructs the foundations for more flexible Vector Space
Models (to be elaborated in the next section).
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Figure 1.2: Representing words in the example in Figure 1.1 in 3-dimensional con-
tinuous vector space. Note the continuous embeddings in the vectors (compared to
binary values in Figure 1.1) and the notion of similarity between “desk”, “desks”, and
“table”.

One-hot representation partly addresses the second limitation discussed above.
However, it still suffers from the first limitation: each word is assigned with a differ-
ent representation and there is no notion of “similarity” between these representa-
tions. Using this representation, it is not possible to encode the conceptual similar-
ity between “noon” and “midday”. Even worse, the two similar looking words such
“desk” and “desks” (which would have similar string-based representations) are as-
signed with completely different representations.

Moreover, as one can guess from Figure 1.1, the size of one-hot representa-
tions grow with the number of words in the vocabulary. In a typical vocabulary, we
should expect hundreds of thousands of words. Representing each word using one-
hot representation is definitely too storage-intensive and would make the processing
difficult (see dimensionality reduction in Chapter 3).

1.3 VECTOR SPACEMODELS
Vector SpaceModel (VSM), first proposed by Salton et al. [1975], provides a solution
to the limitations of one-hot representation. In this model, objects are represented
as vectors in an imaginary multi-dimensional continuous space. In NLP, the space
is usually referred to as the semantic space and the representation of the objects are
called distributed representation. Objects can be words, documents, sentences,
concepts or entities, or any other semantic carrying item between two of which we
can define the notion of similarity. In this chapter, wemostly focus onwords because
they are one of the most widespread applications of VSM in NLP.7

7Throughout this book, unless we explicitly specify, by representation we often mean a word representation,
given that most research in VSM has been around word representation.
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Figure 1.2 shows a simple 3-dimensional semantic space that represents four
words with their corresponding vectors. In fact, one-hot representation is a specific
type of a distributed representation in which each word is represented as a vector
along with one of the axes in the semantic space (the semantic space needs to have
n dimensions where n is the number of words in the vocabulary). Moving from the
local and discrete nature of one-hot representation to distributed and continuous
vector spaces brings about multiple advantages. Most importantly, it introduces the
notion of similarity: the similarity of two words (vectors) can be measured by their
distance in the space. Moreover, many more words can fit into a low dimensional
space; hence, it can potentially address the size issue of one-hot encoding: a large
vocabulary of sizem can fit in an n-dimensional vector space, where n ≪ m.

Figure 1.3 provides a more realistic example with many more words in a 2-
dimensional space. Usually, semantic spaces have hundreds of dimensions. Given it
is not possible to imagine such high dimensionalities, we usually leverage dimension-
ality reduction techniques (cf. Chapter 3) to reduce the size of the semantic space to
two or three for visualization purposes. In Chapter 2, we will describe the process
of learning distributed word representations and their variants.

VSM has been one of the most successful ideas in NLP; it is undoubtedly the
prevalent solution for representing semantics, also supported by research in con-
ceptual spaces for cognitive knowledge representation [Landauer and Dumais, 1997,
Gärdenfors, 2004]. According to cognitive representation, humans characterize ob-
jects with respect to the features they possess. Brain models similarities between
objects according to the similarities between their features.

Distributed representations have established their effectiveness in NLP tasks
such as information extraction [Laender et al., 2002], semantic role labeling [Erk,
2007], word similarity [Radinsky et al., 2011], word sense disambiguation [Navigli,
2009] or spelling correction [Jones andMartin, 1997], inter alia. The process of con-
structing distributed representations has undergone a long history of development in
the past few decades but their constitutional property has remained unchanged: dis-
tance in the vector space denotes a notion of semantic similarity. It is important to
note that distributed representation is not only limited to words; it can be applied to
any other type of concepts or textual forms, such as word senses, entities, sentences,
or documents (all to be covered in this book). Turney and Pantel [2010] provide a
comprehensive survey of conventional VSM techniques in NLP.

1.4 THE EVOLUTION PATHOF REPRESENTATIONS
Vector Space Model [Salton et al., 1975] was initially centred around modeling doc-
uments in information retrieval systems. Despite being simplistic in nature, the ap-
proach proved very successful since its introduction. This persuaded researchers,
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Figure 1.3: Subset of a sample word vector space reduced to two dimensions using
t-SNE [Maaten and Hinton, 2008]. In a semantic space, words with similar meanings
tend to appear in the proximity of each other, as highlighted by these word clusters
(delimited by the red dashed lines) associated with big cats, birds and plants.

such asDeerwester et al. [1990], to extend themodel fromdocuments to other forms,
particularly words. The compatibility of vector-based representation with conven-
tional and modern machine learning and deep learning has significantly helped the
model to prevail as the dominant representation approach for the past few decades.

The distributional hypothesis [Harris, 1954, Firth, 1957], i.e., words that occur
in the same contexts tend to have similar meanings, has been the foundation of au-
tomatically constructing word VSM. However, the interpretation of the hypothesis
and the way of collecting “similarity” clues and constructing the space have gone un-
der enormous changes. Earlier approaches were based on collecting word statistics,
usually in terms of occurrence and co-occurrence frequency. Hence, they are usu-
ally referred to as count-based techniques (Section 3.1). These representations are
often large and needed some sort of dimensionality reduction (Section 3.1.2).

The deep learning tsunami hit the shores of NLP around 2011. Word2vec was
one of the massive waves from this tsunami and once again accelerated the research
in semantic representation. Despite not being “deep”, the model was a very efficient
way of constructing compact vector representations, by leveraging (shallow) neural
networks. Since then, the term “embedding” almost replaced “representation” and
dominated the field of lexical semantics. The fresh blood in veins of lexical seman-
tics resulted in dozens of specialised embedding techniques emerged, such as sense
embedding (Chapter 5), retrofitted embeddings (Section 3.4), and cross-lingual em-
beddings (Section 3.5), many of which are based onWord2vec. This also accelerated
research in other areas of representation, such as embeddings of nodes and relations
in structured knowledge resources, such as semantic networks.
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Word embeddings proved to be potent keepers of semantic; their integration
in various benchmarks resulted in considerable improvements Baroni et al. [2014].
However, they still suffered from a major limitation: they fall short of modeling the
dynamic nature of words.Words can exhibit different syntactic and semantic proper-
ties depending on the context inwhich they appear. For instance, the termmouse can
refer to unrelated meanings (rodent and computer device) depending on the context
in which it appears. Word embeddings are static in nature; the embedding formouse
is unchanged across these contexts.

The latest wave is indeed the so-called contextualized representation. The ap-
proach is aimed at addressing the static nature of word embeddings by allowing the
embedding to adapt itself to the context in which it has appeared. Differently from
conventional word embeddings, the input to these models is not words in isolation,
but words along with their contexts. Contextualized representations are currently
dominating almost all standard NLP benchmarks. Also, the field is rapidly evolving,
with several major advancements in the past few years. Chapter 6 talks about this
new branch of representation.

1.5 COVERAGE OF THE BOOK

This book should be of interest to all AI researchers whowork with natural language,
especially those who are interested in semantics. Our goal with writing this book is to
introduce the topic of semantic representation to those who are new to the area, and
to provide a broader perspective to those who are already familiar with the area with
a quick overview of recent developments and the state of the art in various branches.
The book synthesizes the diverse literature on semantic representation and provides
a high level introduction to major semantic embedding models.

We note that in our overview of various techniques, we provide details only to
that depth that are necessary to sketch the general shape of the field and to provide
a hint on how the research problem was approached. In these cases we also provide
with relevant references so that the reader can investigate a specific sub-area on their
own. We hope this book can bring fresh researchers and practicioners up to speed
on the recent developments in the field, while pointing out open problems and areas
for further exploration.

1.6 OUTLINE

The book is split into nine chapters as follows:

1. In Chapter 2, we provide some background knowledge on the fundamentals
of NLP and machine learning applied to language problems. Then, we briefly
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describe some of the main knowledge resources that are commonly used in lex-
ical semantics.

2. Chapter 3 discusses word representations, starting from a brief overview of
conventional count-based models and continuing with the more recent pre-
dictive and character-based embeddings. We also describe in the same chap-
ter some of the techniques for specialising embeddings, such as knowledge-
enhanced and cross-lingual word embeddings, and common evaluation meth-
ods for word representations.

3. Chapter 4 covers various techniques for embedding structural knowledge re-
sources, in particular semantic graphs. Wewill overviewmajor recent methods
for embedding nodes and edges of graphs and conclude with their applications
and evaluation.

4. In Chapter 5 we focus on the representation of individual meanings of words,
i.e., word senses. The two classes of sense representation (unsupervised and
knowledge-based) are discussed, followed by evaluation techniques for this
type of representation.

5. Chapter 6 is about the recent branch of contextualized embeddings. In this
chapter, we first explain the need for such embeddings and then describe the
prominent models and how they are tied with language models. We also cover
in the same chapter some of the efforts to explain and analyze the effectiveness
of contextualized models.

6. Chapter 7 goes beyond the level of words, and describes how sentences and
documents can be encoded into vectorial representations. We cover some of
the prominent supervised and unsupervised techniques and discuss the appli-
cations and evaluation methods for these representations.

7. Chapter 8 explains some of the ethical issues and inherent biases in word em-
beddings, which have been the topic of discussion recently. The chapter also
covers some of the proposals for debiasing word embeddings.

8. Finally, in Chapter 9 we present the concluding remarks and open research
challenges.
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C H A P T E R 2

Background

2.1 NATURAL LANGUAGE PROCESSING
FUNDAMENTALS

Natural LanguageProcessing (NLP) lies at the intersection of linguistics and computer
science. In this section we cover some fundamental topics in linguistics and NLP
which will be recurrent in most of the chapters. While the coverage of these topics
will be quite shallow, this will give the reader a basic understanding which should be
enough to follow the rest of the book.

2.1.1 LINGUISTIC FUNDAMENTALS
Linguistics, as an area of study, comprises many subfields; for instance, phonetics,
phonology, lexicography, psycholinguistics, and discourse. While in this book we
will not cover these topics in-depth, we would recommend Bender [2013], a book
from this editorial, which covers the most important aspects of linguistics directly
related to natural language processing. In the following, we provide a brief overview
of three major fields of study in linguistics that are related to the topic of this book.

Syntax. Syntax deals with the structures of sentences. It shows the rules and prin-
ciples that specify the order in which words are put together in a sentence in a given
language. For instance, syntax of the English language denotes that sentences in this
language should have the subject–verb–object (SVO) order (where the subject comes
first, followed by the verb, and then the object) whereas syntax for Farsi or Ko-
rean languages generally follows the SOV order. Grammar is a more general concept
which involves syntax but also other rules governing a language, such asmorphology.

Morphology. Morphology deals with the structure of words and studies their con-
stituent parts (roots, stems, prefixes and suffixes). It shows howwords are formed and
how they are related to each other in a language. A language like Farsi is morpho-
logically rich, given that for instance a verb in this language can take many inflected
forms whereas languages such as English are less morphologically diverse.

Semantics. Semantics is the area of linguistics that studies meaning. This is clearly
the areawhich is the central focus of this book. In fact, whatwe generally expect from
an embedding is a machine-readable representation that encodes the semantics (or
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meaning) of a word, a sentence, etc. While there are different branches of seman-
tics, this book mainly deals with lexical semantics, which is the branch that stud-
ies word meaning. Then there are also a few chapters (especially Chapter 7) where
compositional semantics, i.e. how to combine smaller pieces into larger units such
as sentences or documents, come into play.

2.1.2 LANGUAGEMODELS
Language Models (LM) are intended to distinguish grammatical from ungrammatical
sequences in a specified language [Chomsky, 1957]. In other words, given a phrase
or a sentence in a language, a LM has to identify if it is fluent or plausible according
to the grammar of that language or not. For instance, a language model is expected
to identify “high air pollution” as a fluent sequence in English that accords with its
grammar, whereas “high pollution air” as unfluent or ungrammatical.

The statistical approach to language modeling usually makes an n-th order
Markov assumption and estimates the probability of a given sequence based on the
statistics of n-gram frequencies in a large text corpus, usually followed by a smooth-
ing. Statistical LM is one of the major components of Statistical Machine Translation
(SMT) which were the prominent machine translation technique before the intro-
duction of Neural Machine Translation (NMT). The LM component of SMT is re-
sponsible for generating “grammatical” translations in the target language. Roughly
speaking, among a set of candidate translations, the LM unit picks the one that is
more fluent in the target language.

Statistical LM suffers from data sparsity given that the number of possible n-
grams in a language grows exponentially with respect to the vocabulary size and se-
quence length, a phenonemon also known as the curse of dimensionality. Neural
models address the sparsity issue of count-based LMs by moving from the local one-
hot representation of words to a continuous distributed one (see Section 3.2). To this
end, during sequence modeling each word is represented as a continuous vector, in-
corporating the notion of vector space similarity. The continuous representation of
words pushes the languagemodel to learn grammatical and semantic patterns instead
of exact sequences of words. This in turn results in a smoothmodeling that allows the
NLM to assign high probabilities to unobserved sequences based on similar patterns
(semantic and functional similarity) that were observed during training.

In this manner, languagemodeling has largely benefited from distributed repre-
sentations. Interestingly, the benefit has recently turned out to be mutual. The appli-
cation of LM has vastly expanded frommachine translation and generation-oriented
tasks to representation learning. In fact, most of the recent successful word repre-
sentation techniques are closely tied with language modeling.
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It is shown by different researchers that to fulfil the simple objective of predict-
ing the next word (or a set of missing words), language models are forced to encode
complex syntactic and semantic information [Goldberg, 2019, Jawahar et al., 2019].
Owing to this, the recent neural language models that are usually trained on massive
amounts of text have been the dominating approach for semantic representation. In
Chapter 6 we will discuss contextualized representations and explain their close ties
with language models. In the following section we provide more details on neural
networks applied to NLP, for language models and other tasks.

2.2 DEEP LEARNING FOR NLP
In early 90’s, a revolution in the field of NLP gradually led to a shift from Chom-
skyan linguistic theories to Machine Learning (ML). Since then, ML has empowered
many applications in NLP. For almost two decades, statistical ML techniques were
the favourite solution for many NLP tasks and dominated most of the benchmarks.
The general approach was to train shallow models on usually high dimensional and
sparse hand-crafted features. Classification-basedNLP tasks, such as sentiment anal-
ysis, topic categorization, and word sense disambiguation, were conventionally ap-
proached using classifiers such as Support Vector Machines (SVM) and Maximum
Entropy (MaxEnt), whereas Conditional Random Field (CRF) was the predominant
solution to structured prediction tasks, e.g., Named Entity Recognition (NER) and
chunking.

In the past decade, a new revolution has taken place. Upon a highly successful
introduction in Machine Vision, deep learning was like a huge tsunami that hit the
shores of NLP, and has so far dominated the field. A seminal work in this branch is
that of Collobert et al. [2011] who showed that a simple neural network, with no ex-
plicit intervention during training, can outperform feature-based techniques across
several tasks, such as NER and Part-of-Speech tagging. Word2vec [Mikolov et al.,
2013a] was probably another big wave of this tsunami whose impact is still being felt
today. Again, a simple neural network was shown to be highly efficient and effective
in capturing semantics of words compared to computationally expensive statistical
techniques which also required an extra step of dimensionality reductions. In Chap-
ter 3 we will elaborate on Word2vec.

Another impactful deep learning technique that revolutionised many of the
NLP systems at the time is the Long Short-Term Memory (LSTM) network (Section
2.2.2). Until very recently, LSTMs were the optimal solution for encoding sequences
into dense continuous representations, with several desirable properties that were
lacking in the previous models, such as their ability to capture word order and long-
distance dependencies. Prior to LSTMs, sentence-level representation was either
limited to simplistic models such as bag of words or had to resort to local word or-
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derings, such as n-grams. Convolutional neural networks (CNNs) grew in parallel to
LSTMs and showed powerful in tasks such as sentiment analysis and topic catego-
rization. However, they did not attain the popularity of LSTMs since they cannot
capture word order on their own. For a comprehensive overview of neural networks
and their application to NLP, the reader might refer to the book of Goldberg [2017].

2.2.1 SEQUENCE ENCODING
Unlike words, it is not feasible to pre-train embeddings for all word sequences
(phrases, sentences, etc) in a natural language, given that the number of possible se-
quences can be infinite. Therefore, the representation for a text sequence is often
computed as the combination of its words’ representations. Chapter 7 talks about
the representation of longer pieces of texts, such as sentences and documents.

Themost trivial “combination” strategy is called the bag of words (BoW)model:
the representation for the sequence is obtained by averaging the representations of
its individual words. In other words, a set of words are represented as their centroid
point in the vector space. An important issue with the BoW representation is that all
words play equal role in the final representation of the sequence (since an unweighted
average). However, it is natural to expect that some words in the sequence might be
more central to its semantics. There are variations of BoW that assign weights to
words while combining, based on TF-IDF or other information measuring schemes.
Additionally, there is another important issue with the BoW representation that still
remains unaddressed. These representation are called bag of words because they
ignore the order of words while “combining”, which can be crucial in terms of se-
mantics. For instance, the semantically different sequences “rain stopped the match”
and “match stopped the rain” (andmany other ungrammatical sequences constructed
using these words) will have an identical BoW representation.

Recurrent Neural Networks (RNN) have succesfully come into play to address
the above issues in NLP. RNNs are a special type of neural architecture that are char-
acterized by their recurrence: unlike feedforward networks (such as fully connected
and convolutional neural networks), RNNs have feedback loops allowing the net-
work to exhibit temporal dynamic behavior and “remember the past”. Feedforward
networks often receive the input at once; hence, unless some additional measure is
taken, they have no means of capturing the order in sequential data.1.

Figure 2.1 shows a high-level illustration of a simple recurrent neural network.
The same RNN cell receives the input word embeddings in a sequence of timesteps.
The output for each timestep is computed by combining the current input and the
output from the previous timestep. This output (vector) will be passed as an addi-

1We will see in Section 6.2 how a feedforward network, called the Transformer, can be also effectively used
for sequence encoding
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Figure 2.1: Left: RNNs have a loop that allows the network to “remember” the past
words in the sequence. The loop is unrolled on the right side, illustrating how the
RNN functions. Note that the same RNN cell is applied in different time steps to the
words in the sequence.

tional input to the next timestep and this recurrence repeats until end of the sequence
is reached. The simplest formof combination can be tomultiply each of these vectors
to their corresponding weight matrices and then add them to construct the output for
the current timestep. In this way, RNNs can “remember” the past, something which
is crucial for accurate encoding of semantics.

ht = f(Wxt + Uht−1 + bo) (2.1)

where f() is an activation function of choice (e.g., sigmoid), xt is the input embed-
ding at time t (for the tth word) and ht−1 is the output (embedding) from the previous
timestep (t− 1). b is the bias term andW and U are the weight matrices to be learned
during the training. The final h embedding (for the last timestep, or after reading the
last word in the sequence) can be taken as the embedding for the sequence.

2.2.2 RECURRENT NEURAL NETWORKS
Since their adoption, recurrent neural networks have been prominent in NLP for a
number of tasks. In this section we provide details on different variants and models.

RNN variants
In the followingwe explain different variants to encode sequences (in particular word
sequences) using RNNs.

Bidirectional RNN A widely-used extension of RNN is the Bidirectional RNN
(BiRNN). In this case, the input sequence is fed from beginning to end and also
from end to the beginning. This would allow a cell state to have access to “future”
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Figure 2.2: Bidirectional RNN. The text sequence is fed to the network in both di-
rections to allow each timestep to have access to future inputs.

timesteps, i.e., the next words in the input sequence. Figure 2.2 illustrates the archi-
tecture of BiRNN. The resulting h vector for BiRNNs is formed by combining (e.g.,
concatenating) the output vectors h and h′ from the two directions. It is not difficult to
think of cases in which having “future” context might help. For instance, in the sen-
tence “cell is the biological unit of all living organisms”, unless we have seen words
that are to the right of the ambiguous word cell, it is impossible to have a clear under-
standing of the intended meaning of this word. BiRNNs are shown to be beneficial
to many NLP tasks, such as Machine Translation.

Stacked RNNs It is also possible to stack multiple layers of RNN on top of each
other, a setting which has shown to help in some tasks. For instance, Google Trans-
late makes use of a stack of 8 LSTM layers to encode and another 8 to decode the
sequence in source and target languages [Wu et al., 2016]. In the case of stacked
RNN, in the intermediate layers, instead of taking the final ht as the output, all ht val-
ues from different timesteps are passed in the same order, as input to the subsequent
RNN cell (next layer).

Vanishing gradient problem. Backpropagation is the most widely used algo-
rithm for training neural networks. To minimize the loss function, backpropa-
gation computes the gradient of the loss function with respect to the weights;
hence a gradient-based procedure. In order to avoid redundant calculations, the
gradients are calculated using the chain rule from the last layer (where the loss is
computed) iterating backward. Therefore, the gradient value can vanisha quickly
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Figure 2.3: Long Short-Term Memory (LSTM) features a “carry track” that transfers
the cell state across timesteps, allowing long-term dependencies to be captured.

as we move backwards towards the “front” layers. This difficulty is usually re-
ferred to as vanishing gradient problem and can make it impossible to train deep
neural networks. The impact of vanishing gradient in recurrent networks (which
are deep with respect to timesteps) is that it impedes an effective capturing of
long-term dependencies [Bengio et al., 1994]. In other words, this problem lim-
its the memory of simple RNNs, as discussed above, in effectively remembering
the past.
aOr explode, depending on the activation function.

RNN-based models
In this section we provide more details on specific models based on RNNs, in par-
ticular LSTMs and GRU.

LSTM Long Short-Term Memory is a variation of RNN that tries to address the
vanishing gradient problem. Figure 2.3 shows a high-level illustration of an LSTM
network. In this high-level view, the main difference with simple RNNs (Figure 2.1)
lies in the “carry” track which transfers cell states across timesteps. The carry track
works as the memory of this network. An internal mechanism, called gate, allows the
memory in LSTMs to last longer.

Figure 2.4 shows the internal architecture of an LSTM cell. Given an input
word (embedding) xt and a cell state ct that contains the memory from the previ-
ous timesteps, the output of the current timestep ht in the LSTM cell is computed
using the following set of equations:
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Figure 2.4: The internal structure of an LSTM cell. At timestep t, the cell “reads” an
input xt and updates the values of cell state ct and hidden state ht (the output of the
current timestep) using three gates that control the extent to which signals can flow.

ft = σ(Wfxt + Ufht−1 + bf )
it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)
ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc)
ht = ot ◦ tanh(ct)

(2.2)

where ◦ is the element-wise product, σ is the sigmoid function, and ft, it, and ot
are the respective activation vectors for the forget, input (update), and output gates.
There are three main gates in the LSTM cell that regulate the flow of information.

• The forget gate decides what needs to be removed from the memory. This ex-
tent, chracterized by the vector ft, is computed based on the previous state ht−1

and the current input xt (line 1 in Equation 2.2). Having ft as a vector of 1s al-
lows all thememory to be kept, while having all 0s does the opposite. Obviously,
other values of ft allow partial retaining/forgetting of the memory.

• The input (update) gate controls the extent to which a new value should be
placed on the memory. The activation vector for this gate is it which, similarly
to ft, is computed based on the previous state ht−1 and the current input xt, but
with different weight matrices,Wi andUi (line 2 in Equation 2.2). The activation
is multiplied by a transformed version of xt and ht−1 and the resulting vector is
added to the carry track ct−1 to form the updated cell state ct (line 4 in Equation
2.2).
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• The output gate controls the extent to which the “state” should be changed to
compute the output of the current timestep. The output activation ot is com-
puted in a similar manner, by combining signals from ht−1 and xt (line 3 in Equa-
tion 2.2).

The current cell state ct is transformed through tanh and multiplied by ot to
form the output of this timestep, i.e., ht (last line in Equation 2.2). Similarly to other
RNNs, the final cell state ht, upon reading the last token in the sequence, can be taken
as the encoded representation of the sequence. Note that the forget gate on the carry
track does not involve any activation; therefore, it is theoretically possible to flow all
the information through this gate and avoid the vanishing gradient problem.

GRU There are several variants of LSTM. For instance, Gers et al. [2003] aug-
mented LSTMs with “peephole” connections: the activation values ft, it, and ot are
computed not only based on xt and ht−1, but also based on the cell state (ct for the
latter activation and ct−1 for the other two activations). Greff et al. [2017] provide a
comprehensive survey of different LSTM variants.

A famous variant is the Gated Recurrent Unit (GRU). Proposed by [Cho et al.,
2014b], GRU combines forget and input (update) gates into a single “update” gate and
merges cell and hidden states. GRUmakes use of the following equations to compute
the ouput ht:

zt = σ(Wzxt + Uzht−1 + bz)
rt = σ(Wrxt + Urht−1 + br)

h̃t = tanh(Whxt + Uh(rt ◦ ht−1) + bh)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t

(2.3)

where zt and rt are the respective activation vectors for the update and reset gates.
Figure 2.5 shows the internal structure of a GRU cell. As can be seen from the above
equations and from the figure, GRU is simpler than LSTM (it has fewer parameters).
Therefore, it is less computationally expensive and faster to run.

Sequence transduction
The RNN architectures discussed so far encode a text sequence into a fixed size rep-
resentation. These models are mainly suitable for cases in which a fixed-size rep-
resentation for the whole input sentence is required; for instance, in sentence-level
classification tasks, such as sentiment analysis. However, such RNN architectures
are not suitable for tasks in which the output can vary in size. Machine Translation
(MT) is a prototypical example. In this task, the translation of an input sentence can
change in size, depending on the input and other factors, and this size is usually not
known a-priori.
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Figure 2.5: Gated Recurrent Unit (GRU) simplifies the architecture of LSTM by a
few modifications, such as combining forget and input (update) gates into a single
“update” gate and merging cell and hidden states.

A branch of models called Sequence transduction or sequence to sequence
(Seq2Seq) models [Sutskever et al., 2014] are suitable candidates for tasks such as
MT which require input sequences to be transformed or “transduced” to the cor-
responding output sequences (of variable size). In other words, a Seq2Seq model
converts sequences from one domain to another domain, e.g., questions to answers
in Question Answering, or large pieces of texts to short texts in text summarization.

Figure 2.6 shows the high-level architecture of a typical Seq2Seq model. The
model is based on the encoder-decoder structure [Sutskever et al., 2014] which is a
widely-used choice for Seq2Seqmodels. Here, two RNN networks (usually LSTMor
GRU) function as the encoder and decoder modules of this structure. The encoder
transduces an input sequence (x1, ..., xn) to a sequence of continuous representations
r = (r1, ..., rn). The task of the decoder is to decode the sequence r into an output
sequence (y1, ..., ym). The decoder is initialized with the final cell output and state
of the encoder. Having a special start-of-sentence token (such as ”<Start>”) the de-
coder generates the first output token. The output token is the most probable word
according to the softmax layer which spans over the vocabulary.

The model is auto-regressive. In order to generate the second output token,
it consumes the previously generated symbols as additional input. In other words,
at any timestep the RNN receives as its input the generated token from the previ-



D
R
A
FT

20 2. BACKGROUND

Figure 2.6: Sequence transduction based on an encoder-decoder architecture (used
for translation from source to target language).

ous timestep. The decoder keeps generating tokens until another special token that
denotes the end of sequence (such as ”<End>”) is generated.

Attention mechanism
One issue with the encoder-decoder transduction model is that all the necessary in-
formation of the source sentence needs to be compressed into a fixed-length vector.
This is especially problematic for longer sentences [Cho et al., 2014a].

Attention mechanism [Bahdanau et al., 2015] is an alignment technique to cir-
cumvent this problem. While generating output and at each timestep, the decoder
performs a soft search in order to find the set of words that are most important for
generating the current output token. This allows the decoder to focus on those parts
of the input sequence where relevant information is concentrated. In other words,
the encoder is not forced to squash all the information of the source sentence in a
single fixed-size vector. Instead, it encodes the input sentence into a sequence of
vectors which are later used by the decoder to generating the output sequence.

Figure 2.7 provides an illustration for the attention mechanism in an encoder-
decoder sequence transduction model. While generating cellulare, it is natural to
expect the model to look at the source word cell, rather thanmembrane. This is han-
dled by the alignment vector a′, which is usually computed by combining decoder’s
current output ht′+1 and all cell outputs (sequence h) as follows:
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Figure 2.7: Global attention mechanism in encoder-decoder sequence transduction.
During decoding, at each timestep (t′ + 1 in the figure), themodel computes an align-
ment weight vector at′+1 according to the current cell output ht′+1 and all source out-
puts (sequence h). The global context vector ct′+1 is then computed as the weighted
average of source outputs (weighted by at′+1). The attentional output h̃t′+1 is finally
computed based on ct′+1 and ht′+1.

a(t) =
escore(h,h)∑
t e

score(h,ht)
(2.4)

where score(h, h) can be as simple as the dot product hTh or other parametrized
forms such as hTWh. The alignment vectors denotes those positions to which more
attention needs to be paid. For the case of our example, at′+1 assigns more weight
to cell than to membrane. The context vector c is then computed as the weighted
average of h values (weighted by a).

ct′ =
∑
t

at′ht (2.5)

The context vector carries information about those source tokens which are
most useful to the decoder for generating the next output token. The attentional
output is finally computed using the following general formula:
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Figure 2.8: High-level architecture of the Transformer model. The sequence trans-
duction model, which in the case of this figure translates from English to Italian, con-
sists of stacks of encoders and decoders (more details in Chapter 6).

h̃t′ = f(Wc[ct′ ;ht]) (2.6)

where f if the activation function of choice, e.g., tanh. The above procedure (and the
architecture in Figure 2.7) is in fact the global context attentionmechanism proposed
by Luong et al. [2015], which resembles that of [Bahdanau et al., 2015] with some
simplifications.

Luong et al. [2015] also proposed a local context attention mechanism which
aims at reducing the computational cost by constraining the context. As opposed to
the global mechanism which computes the context vector based on all input words,
the local mechanism focuses on a small set of input words and computes the con-
text vector based on this set only. To this end, while generating an output token, the
model first predicts a single source token (to which most attention has to be paid).
Then, the context vector is computed as the weighted average of words in a win-
dow centred around the chosen source token. Luong et al. [2015] showed that the
local attention mechanism not only speeds up the computation, but it also results in
performance improvement in the context of neural machine translation.
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2.2.3 TRANSFORMERS
Until mid 2017, RNNs were the optimal choice for encoding text sequences into
fixed-size representations. However, the introduction of a model called Transformer
Vaswani et al. [2017] revolutionized the field of machine translation, introducing a
new, substantially more powerful, alternative for RNNs.

Before Transformers, the general belief was that capturing long-range depen-
dencies without resorting to some sort of recurrence. What makes the Transformer
interesting is that the architecture is a feed-forward model with no recurrence based
on the attention mechanism only. Despite this, Transformer-based models have sig-
nificantly outperformed RNNs, dominating most benchmarks for a wide range of
NLP tasks that require encoding text sequences.

Figure 2.8 provides a high-level illustration of the Transformer model. Simi-
larly to RNN-based sequence transductionmodels, the Transformer has an encoder-
decoder architecture. However, unlike RNNs that receive input tokens sequentially,
one token at a time, the Transformer model takes all the tokens in the sequence at
once and in parallel. This parallel functionality makes the Transformer substantially
more efficient than RNN for parallel processing. Moreover, it allows the model to
“attending” to far contexts while “reading” a specific word, enabling the capture of
long-distance dependencies.

Given that the Transformer architecture is tightly related with the language
model-based and contextualized representations, we will discuss them with further
details in Chapter 6.

2.3 KNOWLEDGE RESOURCES

Knowledge resources exist in many flavors. In this section we give an overview
of knowledge resources that are mostly used for sense and concept representa-
tion learning. The nature of knowledge resources vary with respect to several fac-
tors. Knowledge resources can be broadly split into two general categories: expert-
made and collaboratively-constructed. Each type has its own advantages and limita-
tions. Expert-made resources (e.g., WordNet) feature accurate lexicographic infor-
mation such as textual definitions, examples and semantic relations between con-
cepts. On the other hand, collaboratively-constructed resources (e.g., Wikipedia
or Wiktionary) provide features such as encyclopedic information, wider coverage,
multilinguality and up-to-dateness.2

2In addition to these two types of resource, another recent branch is investigating the automatic construction
of knowledge resources (particularly WordNet-like) from scratch [Khodak et al., 2017, Ustalov et al., 2017].
However, these output resources are not yet used in practice, and they have been shown to generally lack
recall [Neale, 2018].
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In the following we describe some of the most important resources in lexical
semantics that are used for representation learning, namelyWordNet (Section 2.3.1),
Wikipedia and related efforts (Section 2.3.2), andmergers of different resources such
as BabelNet and ConceptNet (Section 2.3.3).

2.3.1 WORDNET
A prominent example of expert-made resource isWordNet [Miller, 1995], which is
one of the most widely used resources in NLP and semantic representation learn-
ing. The basic constituents of WordNet are synsets. A synset represents a unique
concept which may be expressed through nouns, verbs, adjectives or adverbs and is
composed of one or more lexicalizations (i.e., synonyms that are used to express the
concept). For example, the synset of the concept defined as “the series of vertebrae
forming the axis of the skeleton and protecting the spinal cord” comprises six lex-
icalizations: spinal column, vertebral column, spine, backbone, back, and rachis. A
word can belong to multiple synsets, denoting different meanings it can take. Hence,
WordNet can also be viewd as sense inventory. The sense definitions in this inven-
tory are widely used in the literature for sense representation learning.

WordNet can alternatively be viewed as a semantic network in which nodes are
synsets and edges are lexical or semantic relations (such as hypernymy ormeronymy)
which connect different synsets. The most recent version of WordNet version (3.1,
released on 2012) covers 155,327 words and 117,979 synsets. In its way to becoming
a multilingual resource, WordNet has also been extended to languages other than
English through the OpenMultilingualWordNet project [Bond and Foster, 2013] and
related efforts.

2.3.2 WIKIPEDIA, FREEBASE,WIKIDATA ANDDBPEDIA
Collaboratively-constructed knowledge resources have had substantial contribution
to the research in a wide range of fields, including NLP. Wikipedia is one of the
most prominent examples of such resources.Wikipedia is the largest multilingual en-
cyclopedia of world and linguistic knowledge, with individual pages for millions of
concepts and entities in over 250 languages. Its coverage is steadily growing, thanks
to continuous updates by collaborators. For instance, the English Wikipedia alone
receives approximately 750 new articles per day. Each Wikipedia article represents
an unambiguous concept (e.g., Spring (device)) or entity (e.g., Washington (state)),
containing a great deal of information in the form of textual information, tables, in-
foboxes, and various relations such as redirections, disambiguations, and categories.

A similar collaborative effort was Freebase [Bollacker et al., 2008]. Partly pow-
ered by Wikipedia, Freebase was a large collection of structured data, in the form
of a knowledge base. As of January 2014, Freebase contained around over 40 mil-
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lion entities and 2 billion relations. Freebase was finally shut down in May 2016 but
its information was partially transferred to Wikidata and served in the construction
of Google’s Knowledge Graph. Wikidata [Vrandečić, 2012] is a project operated
directly by the Wikimedia Foundation with the goal of turning Wikipedia into a
fully structured resource, thereby providing a common source of data that can be
used by other Wikimedia projects. It is designed as a document-oriented semantic
database based on items, each representing a topic and identified by a unique iden-
tifier. Knowledge is encoded with statements in the form of property-value pairs,
among which definitions (descriptions) are also included. DBpedia [Bizer et al.,
2009] is a similar effort towards structuring the content of Wikipedia. In particular,
DBpedia exploits Wikipedia infoboxes, which constitutes its main source of infor-
mation.

2.3.3 BABELNET AND CONCEPTNET
The types of knowledge available in the expert-based and collaboratively-
constructed resources make them often complementary. This has motivated re-
searchers to combine various lexical resources across the two categories [Nie-
mann and Gurevych, 2011, McCrae et al., 2012, Pilehvar and Navigli, 2014]. A
prominent example is BabelNet [Navigli and Ponzetto, 2012], which provides a
merger of WordNet with a number of collaboratively-constructed resources, includ-
ing Wikipedia. The structure of BabelNet is similar to that of WordNet. Synsets are
the main linguistic units and are connected to other semantically related synsets,
whose lexicalizations are multilingual in this case. The relations between synsets
come fromWordNet plus new semantic relations coming from other resources such
as Wikipedia hyperlinks and Wikidata. The combination of these resources makes
BabelNet a large multilingual semantic network, containing 15,780,364 synsets and
277,036,611 lexico-semantic relations for 284 languages in its 4.0 release version.

ConceptNet [Speer et al., 2017] is a similar resource that combines semantic
information from heterogeneous sources. In particular, ConceptNet includes rela-
tions from resources like WordNet, Wiktionary and DBpedia, as well as common-
sense knowledge from crowdsourcing and games with a purpose. The main differ-
ence between ConceptNet and BabelNet lies in their main semantic units: Concept-
Net models words whereas BabelNet uses WordNet-style synsets.

2.3.4 PPDB: THE PARAPHRASE DATABASE
A different kind of resource is the ParaPhrase DataBase [Ganitkevitch et al., 2013,
Pavlick et al., 2015, PPDB]. PPDB is a lexical resource containing over 150 million
paraphrases at different linguistic levels: lexical (single word), phrasal (multiword),
and syntactic. In addition to gathering paraphrases, PPDB also has a graph structure
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where words are viewed as nodes and the edges represent mutual paraphrase con-
nections.
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C H A P T E R 3

Word Embeddings
Section 1.3 briefly discussed the Vector Space Model (VSM). We saw in that section
how objects can be represented using continuous vectors in an imaginary space and
how distances in this space can denote the similarities between objects. However,
we did not discuss how these spaces are constructed. In other words, the following
question remained unanswered: how can we place hundreds of thousands of words
in a space such that their positioning corresponds to their semantic properties? In
this chapter, wewill talk about the foundations behind constructing semantic spaces,
particularly for words.

The quick answer to the above question is that semantic spaces are constructed
automatically by analyzingword co-occurrences in large text corpora. But, howword
co-occurrences can denote semantic similarity? The principal idea here is the dis-
tributional hypothesis [Firth, 1957], according to which “a word is characterized
by the company it keeps.” More simply put, words that appear in similar contexts
tend to have similar meanings. For instance, Jupiter and Venus tend to have similar
semantics since they usually appear in similar contexts, e.g., with words such as so-
lar system, star, planet, and astronomy. Therefore, one can collect statistics of word
co-occurrences and infer semantic relationships.

Word representation learning is usually framed as an unsupervised or self-
supervised procedure, in that it does not require any manual annotation of the train-
ing data. Raw texts, which are usually available at scale, can be reliably used for com-
puting word co-occurrence statistics. Therefore, word representation techniques
can automatically learn semantic spaces without needing to resort to external su-
pervision or manual intervention. In fact, one of the winning points of VSMs, when
compared to other knowledge representation approaches, is that they can be directly
computed from un-annotated corpora, This is a very desirable property that has al-
lowed VSMs to be highly flexible and extendable and therefore to dominate the field
of semantic representation for many years.

However, there are several obstacles on inferring word semantics from co-
occurrence statistics. We will talk about a few of these issues in this book. For in-
stance, in addition to the celestial body meaning, star can refer to a well-known
celebrity. Having star in the context of actress and Jupiter should not lead to infer-
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ring a semantic relationship between these two words. We will talk more about the
ambiguity issue in Chapter 5.

In this chapter, we will specifically talk about word embeddings. Word embed-
dings are in fact a special type of distributedword representation that are constructed
by leveraging neural networks, mainly popularised after 2013, with the introduction
ofWord2vec.Word embeddings are usually classified as predictivemodels because
they are computed through languagemodeling objectives, such as predicting the next
or a missing word. Before talking about predictive models in Section 3.2, we need to
briefly describe the “traditional” count-based (Section 3.1) representations as they
lay the foundation for word embeddings. We will then see the different variants and
specialisation techniques for improving word embeddings, such as character embed-
ding (Section 3.3) and knowledge-enhanced embeddings (Section 3.4), and briefly
discuss cross-lingual semantic spaces (Section 3.5). This chapter concludes by com-
mon evaluation benchmarks for word embeddings (Section 3.6).

3.1 COUNT-BASEDMODELS

The conventional approach for constructing VSMs was mainly based on word fre-
quencies; therefore, the approach is usually referred to as count-based. Broadly
speaking, the general theme in count-based models is to construct a matrix based on
word frequencies. Turney and Pantel [2010] categorises count-based models based
on their matrices into three general classes:

• Term-document. In this matrix, rows correspond to words and columns to
documents. Each cell denotes the frequency of a specific word in a given doc-
ument. Salton et al. [1975] first used this matrix for representing documents
in order to measure the semantic similarity of pairs of documents. Two docu-
ments with similar patterns of numbers (similar columns) are deemed to be hav-
ing similar topics. The term-document model is document centric; therefore, it
is usually used for document retrieval, classification, or similar document-based
purposes.

• Word-context. Unlike the term-document matrix which focuses on document
representation, word-context matrix aims at representing words. Deerwester
et al. [1990] first proposed using this matrix for measuring word similarity. Im-
portantly, they extended the notion of context from documents to a more flex-
ible definition which allowed a wide spectrum of possibilities, spanning from
neighbouring words to windows of words, to grammatical dependencies or se-
lectional preferences, to whole documents. The word-context matrix is the
most widespread form of modeling and enables many applications and tasks,
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such asword similaritymeasurement, word sense disambiguation, semantic role
labeling, and query expansion.

• Pair-pattern. In thismatrix, rows correspond to pairs ofwords and columns are
the patterns in which the two have occurred. Lin and Pantel [2001] used this to
find similarity of patterns, e.g. “X is the author of Y” and “Y is written by X”. The
matrix is suitable for measuring relational similarity: the similarity of semantic
relations between pairs of words, e.g., “linux:grep” and “windows:findstr”. Lin
and Pantel [2001] first proposed extended distributional hypothesis: patterns
that co-occur with similar pairs (contexts) tend to have similar meanings.

The earliest VSM applied in NLP considered a document as a vector whose di-
mensions were the whole vocabulary [Salton et al., 1975]. Weights of individual di-
mensions were initially computed based on word frequencies within the document.
Different weight computation metrics have been explored, but mainly based on fre-
quencies or normalized frequencies [Salton and McGill, 1983]. This methodology
has been successfully refined and applied to various NLP applications such as infor-
mation retrieval [Lee et al., 1997], text classification [Soucy and Mineau, 2005], or
sentiment analysis [Turney, 2002], to name a few. In this bookwewill focus on newer
forms of representation (i.e. embeddings), and we would recommend the extensive
survey of Turney and Pantel [2010], which provides a comprehensive overview of
earlier VSM and their applications, for more detailed information.

The document-based VSM has been also extended to other lexical items like
words. In this case a word is generally represented as a point in a vector space. A
word-based vector has been traditionally constructed based on the normalized fre-
quencies of the co-occurring words in a corpus [Lund and Burgess, 1996], by follow-
ing the initial theories ofHarris [1954]. Themain idea behindwordVSM is that words
that share similar context should be close in the vector space (therefore, have sim-
ilar semantics). Figure 1.3 shows an example of a word VSM where this underlying
proximity axiom is clearly highlighted.

3.1.1 POINTWISEMUTUAL INFORMATION
Raw frequencies does not provide a reliable measure of association. A “stop word”
such as “the” can frequently co-occur with a givenword, but this co-occurrence does
not necessarily correspond to a semantic relationship, since it is not discriminative.
It is more desirable to have a measure that can incorporate the informativeness of a
co-occurrence. Positive Pointwise Mutual Information (PPMI, or PMI in general) is
such a measure [Church and Hanks, 1990]. PMI normalizes the importance of the
co-occurrence of two words by their individual frequencies.
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PMI(w1, w2) = log2
P (w1, w2)

P (w1)P (w2)
(3.1)

where P (x) is the probability of word xwhich can be directly computed based on its
frequency. PMI checks if w1 and w2 co-occur more than they occur independently.
A stop word has a high P value, resulting in a reduced overall PMI value. PMI values
can range from − inf to + inf. Negative values indicate a co-occurrence which is less
likely to happen than by chance. Given that these associations are computed based
on highly sparse data and that they are not easily interpretable (it is hard to define
what itmeans for twowords to be very “unrelated”), we usually ignore negative values
and replace them with 0, hence Positive PMI (PPMI).

3.1.2 DIMENSIONALITY REDUCTION
The word-context modeling is the most widespread way to compute count-based
word representations. Usually, words that co-occur with the target word are taken as
its context. Therefore, the number of columns1 in this matrix is equal to the number
of words in the vocabulary (i.e., unique words in a corpus). This number can easily
reach hundreds of thousands or even millions, depending on the underlying corpus.
This can potentially be a limiting factor, given that large vectors are less favorable
due to storage space and computational reasons. To circumvent this limitation, a di-
mensionality reduction procedure is usually applied to VSM representations.

Dimensionality reduction can be obtained by simply dropping those contexts
(i.e., columns) which are less informative or important (for instance, frequent func-
tion words). This can be done using feature selection techniques. But, we can also re-
duce dimension bymerging or combining multiple columns into fewer new columns.
The latter case is the basis for Singular Value Decomposition (SVD), which is a com-
mon approach for dimensionality reduction of VSMs.

SVD consists of factorizing a given m× n matrix into three component matri-
ces UΣV ∗, where Σ is an m× n diagonal matrix whose diagonal entries are called
“singular values”. One can reconstruct the original matrix based on these three. But,
interestingly, it is also possible to reconstruct an approximation of the original ma-
trix (with smaller dimensionality). To this end, one can pick only the set of k largest
singular values (discarding the rest) and use that to reconstruct anm× k approxima-
tion of the original matrix. With SVD, word representations are now reduced in size
from n dimensions to k (where n ≪ k). Reducing dimensionality can bring additional
advantages, such as eliminating noise. Note that the new k dimensions are not more
interpretable.

1The number of columns and rows in the word-context should be equal if we are interested in representing all
words
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One of the key features of neural networks is their ability to learn dense rep-
resentations. In what follows, we will see some techniques that leverage neural net-
works to directly learn low-dimensional word representations, without needing to
resort to the additional dimensionality reduction step.

3.2 PREDICTIVEMODELS

Learning low-dimensional vectors from text corpora can alternatively be achieved
by leveraging neural networks. The representations that are generated using neural
networks are commonly referred to as embedding, particularly due to their property
of being dense and low dimensional. Neural networks were suitable candidates for
this purpose due to their efficiency and speed in processing large amounts of texts and
for their ability in learning dense representations [Bengio et al., 2003, Collobert and
Weston, 2008, Turian et al., 2010, Collobert et al., 2011]. However, their success was
limited due to hardware and software limitations of deep learning. In the last decade,
together with the growth of deep learning, neural network based representations
(embeddings) have almost fully replaced the conventional count-based models and
dominated the field. Given that neural word embeddings are usually trained with
some sort of languagemodeling objective, such as predict amissingword in a context,
they are also referred to as predictive models. Word embeddings were popularized
by Word2vec [Mikolov et al., 2013a].

Word2vec. Word2vec [Mikolov et al., 2013d] is based on a simple but effi-
cient feedforward neural architecture which is trained with language modeling
objective. Two different but relatedWord2vec models were proposed: Continu-
ous Bag-Of-Words (CBOW) and Sikp-gram. The CBOW model aims at predict-
ing the current word using its surrounding context, minimizing the following loss
function:

E = − log(p(w⃗t|W⃗t)) (3.2)

where wt is the target word and Wt = wt−n, ..., wt, ..., wt+n represents the se-
quence of words in context. The Skip-grammodel is similar to the CBOWmodel
but in this case the goal is to predict the words in the surrounding context given
the target word, rather than predicting the target word itself.

Figure 3.1 shows a simplification of the general architecture of the CBOW
and Skip-gram models of Word2vec. The architecture consists of input, hidden
and output layers. The input layer has the size of the word vocabulary and en-
codes the context as a combination of one-hot vector representations of sur-
rounding words of a given target word. The output layer has the same size as the
input layer and contains a one-hot vector of the target word during the training
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Figure 3.1: Learning architecture of the CBOW and Skipgram models of Word2vec
[Mikolov et al., 2013a].

phase. Interestingly, Levy andGoldberg [2014b] proved that Skip-gram can be in
fact viewed as an implicit factorization of a Pointwise Mutual Information (PMI)
co-occurrence matrix (Section 3.1.1).

Another prominent word embedding architecture is GloVe [Pennington et al.,
2014], which tries to perform the meaning embedding procedure of Word2vec in an
explicit manner. Themain idea behindGloVe is that the ratio of co-occurrence prob-
abilities of two words, wi and wj, with a third probe word wk, i.e., P(wi,wk)/P(wj ,wk),
is more indicative of their semantic association than a direct co-occurrence proba-
bility, i.e., P (wi, wj). To achieve this, they propose an optimization problem which
aims at fulfilling the following objective:

wT
i wk + bi + bk = log(Xik) (3.3)

where bi and bk are bias terms forwordwi and probewordwk andXik is the number of
timeswi co-occurswithwk. Fulfilling this objectiveminimizes the difference between
the dot product ofwi andwk and the logarithm of their number of co-occurrences. In
other words, the optimization results in the construction of vectors wi and wk whose
dot product gives a good estimate of their transformed co-occurrence counts.

Note that GloVe does not make use of neural networks. However, Levy et al.
[2015] consider it as a predictive model, mainly since GloVe was proposed with the
new wave of neural word embeddings and was different from conventional count-
based models in that it uses Stochastic Gradient Descent to optimize a non-convex
objective, whereas SVD guarantees an optimal decomposition (according to its ob-
jective).

In recent years more complex approaches that attempt to improve the qual-
ity of word embeddings have been proposed, including models exploiting depen-
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dency parse-trees [Levy andGoldberg, 2014a] or symmetric patterns [Schwartz et al.,
2015], leveraging subword units [Wieting et al., 2016, Bojanowski et al., 2017], repre-
senting words as probability distributions [Vilnis andMcCallum, 2015, Athiwaratkun
and Wilson, 2017, Athiwaratkun et al., 2018], learning word embeddings in multi-
lingual vector spaces [Conneau et al., 2018b, Artetxe et al., 2018b], or exploiting
knowledge resources (more details about this type in Section 3.4).

3.3 CHARACTER EMBEDDING
Even when the vocabulary of a word embedding space is large, we can encounter
situations where a word is out of vocabulary (OOV). The default solution for such
cases is to assign a random embedding to the OOV word. This is indeed not a good
solution, especially if it is a word that plays a central role in our understanding of the
context and in decision making.

There is a literature on unseen word representation. Given that many of the
OOV words can be morphological variations of existing words in the vocabulary, a
large body of work has focused on this type of unseen word representation [Lazari-
dou et al., 2013, Botha and Blunsom, 2014, Soricut and Och, 2015]. To this end,
usually a morphological segmenter is used to break inflected words into their com-
ponents and to compute representations by extending the semantics of an unseen
word’s morphological variations. For instance, an unseen word like memoryless can
be broken intomemory and less. An embedding can be induced for the unseen word
based on the embeddings of its individual components memory and less which are
more frequent and probably seen during the training.

Alternatively, the word can be broken into constituent subwords, i.e., group
of characters that are not necessarily semantically meaningful. FastText [Bojanowski
et al., 2017] is a prominent example for such an approach. In addition to words ap-
pearing in the training corpus, the model learns embeddings for n-grams of these
words. Then, in the case of an unseen word, the corresponding embedding is in-
duced by averaging the vector representations of its constituent character n-grams.
This provides a quick solution for OOV embedding, but not an optimal one given
that two words can have similar n-gram constitutents but be dissimilar in terms of
semantics.

Another approach for unseenword representation is to exploit knowledge from
external lexical resources, such as WordNet, in order to induce an embedding for
the unseen word (with the assumption that the word is covered in WordNet). For
instance, Pilehvar and Collier [2017a] extract from WordNet a set of semantically
similar words to the OOV word and combine their embeddings to form an embed-
ding for the OOV word. Bahdanau et al. [2017] take a similar approach and leverage
the definition of the missing word (again taken from WordNet) to induce its repre-
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sentation. These techniques make the assumption that the OOV word is covered in
the underlying lexical resource, which might not be necessarily true.

It is also possible to change the architecture of theNLP system so that it receives
sequences of characters as its input, instead of the usual sequence of word tokens.
Such character-based models are usually coupled with LSTM networks, with the
hope to capture character order and also sequential patterns. Such character-based
models have been successfully tested in different NLP tasks, including languagemod-
eling [Sutskever et al., 2011, Graves, 2013], part-of-speech tagging [Dos Santos and
Zadrozny, 2014, Ling et al., 2015], syntactic parsing [Ballesteros et al., 2015], and
machine translation [Lee et al., 2017, Kalchbrenner et al., 2016].

3.4 KNOWLEDGE-ENHANCEDWORD EMBEDDINGS
As explained throughout this chapter, word vector representations (e.g., word em-
beddings) are mainly constructed by exploiting information from text corpora only.
However, there is also a line of researchwhich tries to combine the information avail-
able in text corpora with the knowledge encoded in lexical resources. This knowl-
edge can be leveraged to include additional information not available in text corpora
in order to improve the semantic coherence or coverage of existing word vector rep-
resentations. Moreover, knowledge-enhanced word representation techniques are
closely related to knowledge-based sense representation learning (see next section),
as various models make use of similar techniques interchangeably.

The earlier attempts to improveword embeddings using lexical resources mod-
ified the objective function of a neural languagemodel for learning word embeddings
(e.g., Skip-gram of Word2vec) in order to integrate relations from lexical resources
into the learning process [Xu et al., 2014, Yu and Dredze, 2014]. A more recent class
of techniques, usually referred to as retrofitting [Faruqui et al., 2015], attempts at
improving pre-trained word embeddings with a post-processing step. Given any pre-
trained word embeddings, themain idea of retrofitting is to move closer words which
are connected via a relationship in a given semantic network2. The main objective
function to minimize in the retrofitting model is the following:

|V |∑
i=1

(
αi∥w⃗i − ⃗̂wi∥+

∑
(wi,wj)∈N

βi,j∥w⃗i − w⃗j∥
)

(3.4)

where |V | represents the size of the vocabulary, N is the input semantic network
represented as a set of word pairs, w⃗i and w⃗j correspond to word embeddings in the
pre-trained model, αi and βi,j are adjustable control values, and ⃗̂wi represents the
output word embedding.
2FrameNet [Baker et al., 1998], WordNet and PPDB [Ganitkevitch et al., 2013] are used in their experiments.
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Building upon retrofitting, Speer and Lowry-Duda [2017] exploited the multi-
lingual relational information of ConceptNet for constructing embeddings on a mul-
tilingual space, and Lengerich et al. [2017] generalized retrofitting methods by ex-
plicitly modeling pairwise relations. Other similar approaches are those by Pilehvar
and Collier [2017b] and Goikoetxea et al. [2015], which analyze the structure of se-
mantic networks via Personalized Page Rank [Haveliwala, 2002] for extending the
coverage and quality of pre-trained word embeddings, respectively. Finally, Bolle-
gala et al. [2016]modified the loss function of a givenword embeddingmodel to learn
vector representations by simultaneously exploiting cues from both co-occurrences
and semantic networks.

Recently, a new branch that focuses on specializing word embeddings for spe-
cific applications has emerged. For instance, Kiela et al. [2015] investigated two vari-
ants of retrofitting to specialize word embeddings for similarity or relatedness, and
Mrksic et al. [2017] specialized word embeddings for semantic similarity and dia-
logue state tracking by exploiting a number of monolingual and cross-lingual lin-
guistic constraints (e.g., synonymy and antonymy) from resources such as PPDB and
BabelNet.

In fact, as shown in this last work, knowledge resources also play an important
role in the construction of multilingual vector spaces. The use of external resources
avoids the need of compiling a large parallel corpora, which has been traditionally
been the main source for learning cross-lingual word embeddings in the literature
[Upadhyay et al., 2016, Ruder et al., 2017]. These alternative models for learning
cross-lingual embeddings exploit knowledge from lexical resources such as Word-
Net or BabelNet [Mrksic et al., 2017, Goikoetxea et al., 2018], bilingual dictionaries
[Mikolov et al., 2013b, Ammar et al., 2016, Artetxe et al., 2016, Doval et al., 2018] or
comparable corpora extracted from Wikipedia [Vulić and Moens, 2015]. In the fol-
lowing section we provide more details on these approaches and cross-lingual word
embedding learning in general.

3.5 CROSS-LINGUALWORD EMBEDDINGS
Cross-lingual word embeddings are an extended notion of word embeddings where
words from two or more languages are represented in the same shared low-
dimensional vector space. Intuitively, these spaces preserve similar properties than
standard monolingual word embeddings.

For a more comprehensive overview of cross-lingual word embeddings we rec-
ommend the book from this editorial of Søgaard et al. [2019]. In the followingwe split
the different types of word embedding by their source of supervision: sentence-level
(Section 3.5.1), document-level (Section 3.5.2), word-level (Section 3.5.3) and unsu-
pervised (Section 3.5.4).
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3.5.1 SENTENCE-LEVEL SUPERVISION
The kind of supervision for these models lie generally on parallel corpora, of the
same type used for Machine Translation, e.g., Europarl [Koehn, 2005]. This is ex-
tensive for many high-resource language pairs, but sometimes hard to obtain it, at
least publicly, for other less-resources languages. Given their similarity with Ma-
chine Translation, the methods to learn cross-lingual with this kind of supervision
are often interchangeable. Examples of cross-lingual embedding learned from sen-
tence alignments are Hermann and Blunsom [2014] or Lauly et al. [2014] which use
compositional functions and autoencoders, respectively.

3.5.2 DOCUMENT-LEVEL SUPERVISION
This kind of supervision involves full comparable documents (not necessarily trans-
lations) which versed about the same domain. The most prominent example of this
kind of supervision isWikipedia, where documents in different languages explain the
same concept or domain. This supervision is arguably easier to obtain than sentence
translations and, in the worst case, fully translated documents could also be used for
supervision. For instance, Vulić and Moens [2016] make use of Wikipedia pages of
the same concept or entity in different languages. These differentWikipedia versions
are not exact translations but rather deal with the same topic.

3.5.3 WORD-LEVEL SUPERVISION
To learn cross-lingual embeddings with word-level supervision, only a bilingual dic-
tionary is necessary. This branch has been quite attractive for some time due to this
cheap supervision, as bilingual dictionaries are easily available for hundreds of lan-
guage pairs.

Thesemethods are in themain based on linear alignments that mapwords from
the input languages to their translations in the target language. A prominent example
of such method is the proposal of Mikolov et al. [2013b]. Specifically, they proposed
to learn a matrixW which minimizes the following objective:

n∑
i=1

∥xiW − zi∥2 (3.5)

where we write xi for the vector representation of some word xi in the source
language and zi is the vector representation of the translation zi ofwi in the target lan-
guage. This optimization problem corresponds to a standard least-squares regression
problem, whose exact solution can be efficiently computed. Note that this approach
relies on a bilingual dictionary containing the training pairs (x1, z1), ..., (xn, zn). How-
ever, once the matrix W has been learned, for any word w in the source language,
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we can use xW as a prediction of the vector representation of the translation ofw. In
particular, to predict which word in the target language is the most likely translation
of the word w from the source language, we can then simply take the word z whose
vector z is closest to the prediction xW.

The restriction to linear mappings might intuitively seem overly strict. How-
ever, it was found that higher-quality alignments can be found by being even more
restrictive. In particular, Xing et al. [2015] suggested to normalize the word vec-
tors in the monolingual spaces, and restrict the matrix W to an orthogonal matrix
(i.e., imposing the constraint that WWT = 1). Under this restriction, the optimiza-
tion problem (3.5) is known as the orthogonal Procrustes problem, whose exact so-
lution can still be computed efficiently. Another approach was taken by Faruqui and
Dyer [2014], who proposed to learn linear transformations Ws and Wt, which re-
spectively map vectors from the source and target language word embeddings onto a
shared vector space. They used Canonical Correlation Analysis to find the trans-
formations Ws and Wt which minimize the dimension-wise covariance between
XWs and ZWt, where X is a matrix whose rows are x1, ...,xn and similarly Z is a
matrix whose rows are z1, ..., zn. Note that while the aim of Xing et al. [2015] is to
avoid making changes to the cosine similarities between word vectors from the same
language, Faruqui and Dyer [2014] specifically want to take into account informa-
tion from the other language with the aim of improving the monolingual embeddings
themselves.On top of this, Artetxe et al. [2018a] proposed a multi-step framework
in which they experiment with several pre-processing and post-processing strate-
gies. These include whitening (which involves applying a linear transformation to the
word vectors such that their covariance matrix is the identity matrix), re-weighting
each coordinate according to its cross-correlation (which means that the relative im-
portance of those coordinates with the strongest agreement between both languages
is increased), de-whitening (i.e., inverting the whitening step to restore the origi-
nal covariances), and dimensionality reduction step, which is seen as an extreme
form of re-weighting (i.e., those coordinates with the least agreement across both
languages are simply dropped). They also consider the possibility of using orthog-
onal mappings of both embedding spaces into a shared space, rather than mapping
one embedding space onto the other, where the objective is based on maximizing
cross-covariance. Other approaches that have been proposed for aligning monolin-
gual word embedding spaces include models which replace (3.5) with a max-margin
objective Lazaridou et al. [2015] and models which rely on neural networks to learn
non-linear transformations Lu et al. [2015].

Postprocessing. By restricting transformations to orthogonal linearmappings,
these methods rely on the assumption that the monolingual embeddings spaces
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Figure 3.2: Two-stage procedure for mapping two monolingual word embedding
spaces together [Doval et al., 2018].

are approximately isomorphic [Barone, 2016, Doval et al., 2019]. However, it
has been argued that this assumption is overly restrictive, as the isomorphism as-
sumption is not always satisfied [Søgaard et al., 2018]. For this reason, it has been
proposed to go beyond orthogonal transformations by modifying the internal
structure of the monolingual spaces, either by giving more weight to highly cor-
related embedding components, as is the case for unsupervised variants [Artetxe
et al., 2018a], or by complementing the orthogonal transformation with other
forms of post-processing. As an example of this latter strategy, Doval et al. [2018]
fine-tune the initial alignment by learning an unconstrained linear transforma-
tion which aims to map each word vector onto the average of that vector and the
corresponding word vector from the other language.

Figure 3.2 shows a common pipeline including an orthogonal transformation
and a final post-processing to further approach the resulting embedding spaces.

3.5.4 UNSUPERVISED
This branch of cross-lingual embeddings deals with those approaches that do not
need for any kind of external supervision. Generally, unsupervised models learn
language-specific embeddings from monolingual corpora and then learn a bilingual
dictionary based on the distribution of these embeddings. This bilingual dictionary
can also be learned leveraging using distant supervision techniques, such as con-
structing dictionaries from identical tokens [Smith et al., 2017] or numerals [Artetxe
et al., 2017] or exploiting structural similarities of the monolingual vector spaces.

From this branch techniques to learn a bilingual dictionary automatically from
the monolingual embeddings can be split into two main categories: adversarial and
distributional. One of the prominent works exploiting adversarial techniques is Con-
neau et al. [2018b]. This approach relies on adversarial training [Goodfellow et al.,
2014], similar as in earlier models [Barone, 2016, Zhang et al., 2017b] but using a
simpler formulation, based on themodel in (3.5) with the orthogonality constraint on
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W. The main intuition is to chooseW such that it is difficult for a classifier to distin-
guish between word vectors z sampled from the target word embedding and vectors
xW, with x sampled from the source word embedding. There have been other ap-
proaches to create this initial bilingual dictionary without supervision via adversarial
training [Zhang et al., 2017a, Hoshen and Wolf, 2018, Xu et al., 2018] or stochastic
processes [Alvarez-Melis and Jaakkola, 2018]. These approaches have attempted to
improve the robustness of the initial adversarial alignment, which have been shown
not robust in different settings and especially on far languages [Søgaard et al., 2018].
As for non-adversarial techniques, Artetxe et al. [2018b] obtain the initial seed dic-
tionary automatically by leveraging the similarity histogram distribution of words in
the source and target languages. The underlying idea is that word translation in dif-
ferent languages will have similar distributions with respect to their distance to the
other words in the vocabulary.

Finally, once this bilingual dictionary is constructed, cross-lingual embeddings
are learned by making use of the word-level techniques presented in Section 3.5.3.

3.6 EVALUATION
In this section we present themost common evaluation benchmarks for assessing the
quality of word representations. Depending on their nature, evaluation procedures
are generally divided into intrinsic (Section 3.6.1) and extrinsic (Section 3.6.2).

3.6.1 INTRINSIC EVALUATION
Intrinsic evaluation refers to a class of benchmarks that provide a generic evaluation
of the quality and coherence of a vector space, independently from their perfor-
mance in downstream applications. Different properties can be intrinsically tested,
with semantic similarity being traditionally viewed as the most straightforward fea-
ture to evaluate meaning representations. In particular, the semantic similarity of
small lexical units such as words, in which compositionality is not required, has re-
ceived the most attention. Word similarity datasets exist in many flavors.

It is also worth distinguishing the notions of similarity and relatedness. Two
words are deemed to be semantically similar if they share many properties (e.g.,
“bike” and ”motorcycle”, “lime” and “lemon”) whereas they are semantically related
as long as they have any semantic relationship, such as meronymy (e.g., “wheel” and
“bike”) or antonymy (“sunset” and “sunrise”). While words that are semantically sim-
ilar can be technically substituted with each other in a context, related words are
enough to co-occur in the same context (e.g., within a document) without the need
for substitutability.

The original WordSim-353 [Finkelstein et al., 2002] is a dataset that conflates
these two notions. Agirre et al. [2009] divided the pairs in the dataset into two new
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subsets with the aim of distinguishing similarity and relatedness. Genuine similarity
datasets include RG-65 [Rubenstein and Goodenough, 1965] and C-30 [Miller and
Charles, 1991], which only contains 65 and 30 word pairs, respectively, or SimLex-
999 [Hill et al., 2015], consisting of 999word pairs. For amore comprehensive survey
on semantic relatedness evaluation procedures, the reader could refer to Taieb et al.
[2019].

As long as intrinsic evaluation benchmarks are concerned for languages other
than English, very few word similarity datasets exist. Equivalents of the originally-
English RG-65 and WordSim-353 datasets are constructed via translating these
datasets either by experts [Gurevych, 2005, Joubarne and Inkpen, 2011, Granada
et al., 2014, Camacho-Collados et al., 2015], or by means of crowdsourcing [Leviant
and Reichart, 2015]. Similarly, for the cross-lingual representations, most intrinsic
benchmarks are constructed based on standard Englishword similarity datasets:MC-
30 [Miller and Charles, 1991] and WordSim-353 [Hassan and Mihalcea, 2011],and
RG-65 [Camacho-Collados et al., 2015]. The procedure is based on aligning pairs
across different versions of the same dataset in different languages. However, these
datasets are either too small to allow a reliable comparison of models and to draw
concrete conclusions, or they inherit the conflated similarity scale of the WordSim-
353 dataset. SemEval-2017 Task 2 [Camacho-Collados et al., 2017] was aimed at
addressing these issues by introducing several relatively large multilingual and cross-
lingual datasets annotated by experts according to a refined scale.

In addition to word similarity, measuring relational similarity has been used
as a means of evaluating word representations, especially word embeddings. One
of the popular evaluation benchmark for the purpose was constructed by Mikolov
et al. [2013c]. Given a pair (e.g., brother and sister) and a third word (e.g., grand-
son) the goal is to find the pairing word for the third word that matches the semantic
relationship between the words in the first pair (e.g., granddaughter). Other intrin-
sic evaluation procedures include synonymy selection [Landauer and Dumais, 1997,
Turney, 2001, Jarmasz and Szpakowicz, 2003, Reisinger and Mooney, 2010], out-
lier detection [Camacho-Collados and Navigli, 2016, Blair et al., 2016, Stanovsky
and Hopkins, 2018], and selectional preferences and concept categorization [Baroni
et al., 2014]. For more information, Bakarov [2018] provides a more comprehensive
overview of intrinsic evaluation benchmarks.

Problems with intrinsic evaluations
Several problems have been pointed out by various researchers on the intrinsic evalu-
ations ofword representations. An important limitation is that word similarity bench-
marks often consider only the attributional similarity of words, i.e., the extent of cor-
respondence between the properties of two words. However, different tasks in NLP
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deal with different notions of similarity, which might not necessarily match attribu-
tional similarity. For instance, word embeddings to be used for a POS tagging model
do not need to encode fine-grained semantic distinctions, e.g., having identical rep-
resentations for cat and tiger and even giraffe might not be an issue. However, for
a Question Answering system, fine-grained distinctions such as that between south
and north might be critical: there is a huge difference between answering “around
sunset” and “around sunrise” when asked “when is best to visit the museum?”. The
SimLex-999 dataset is designed with the intention to highlight this notion of similar-
ity: For instance the score assigned to the pair “sunset”:“sunrise” is lower than that
for “bed”:“bedroom” and “paper”:“wood”.

Given the variability in the notion of similarity, one might expect word embed-
dings to behave differently in various NLP tasks. In fact, it has been shown in several
studies that intrinsic evaluation protocols do not always correlate with downstream
performance. Tsvetkov et al. [2015] showed that performance on standardword simi-
larity benchmarks has a low correlationwith results on tasks such as sentiment analy-
sis, metaphor detection and text classification, whereas Chiu et al. [2016] found that,
strikingly, there is a negative correlation between word similarity performance and
results on Named Entity Recognition.

Tsvetkov et al. [2015] proposed an alternative intrinsic evaluation, called
QVEC, which is based on aligning a word embedding matrix to the matrix of fea-
tures extracted from manually crafted lexical resources. Specifically, they use Sem-
Cor [Miller et al., 1993], a large sense-annotated corpus, to construct a customword-
context matrix where rows are words and columns are WordNet supersenses (which
are 41 in total). The columns in this matrix are aligned with the columns in the corre-
sponding word representation matrix (which is to be evaluated) by maximizing cor-
relation. The central assumptions is that dimensions in the latter matrix correspond
to linguistic properties in the former matrix. The degree of “semantic content” is
then computed as the total correlation among these two matrices. It was shown that
QVEC can produce better estimates of downstream performance when compared to
standard word similarity evaluations.

Another important problem with intrinsic evaluation is due to hubness. A hub
in the semantic space is a word that has high cosine similarity with a large number of
other words [Lazaridou et al., 2015]. Pairs of words with similar frequency tend to be
closer in the semantic space, thus showing higher word similarity than they should
[Schnabel et al., 2015].

Ignoring the polysemous nature of words is another issue with most existing
intrinsic evaluation benchmarks. Most word similarity benchmarks do not check for
the ability of embedding models in capturing different meanings of a word. For an
embedding model to succeed on these benchmarks, it is often enough to encode
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the most frequent meaning of a word. In chapter 5 we will talk in detail about the
desired property of word embeddings in capturing various meanings. For a more de-
tailed review of problems associated with word embeddings, the reader might refer
to Faruqui et al. [2016].

3.6.2 EXTRINSIC EVALUATION
Extrinsic evaluation procedures aim at assessing the quality of vector representations
when used as input features to a machine learning model in a downstram NLP task.
In addition to intrinsic evaluation procedures, extrinsic evaluation is necessary to
understand the effectiveness of word representation techniques in real-world appli-
cations. This is especially relevant given the problems listed with currently practised
intrinsic evaluations.

In fact, any NLP application that deals with lexical semantics can be used for
extrinsic evaluation of word representation. In their seminal work on the use of neu-
ral networks for NLP, Collobert et al. [2011] used a wide range of tasks including
part of speech tagging, chunking, named entity recognition, and semantic role la-
beling. Though the goal in this work was not exactly the explicit evaluation of word
embeddings, one can use the framework for comparing various word embeddings by
introducing them to the model as input features while fixing the network configu-
ration. Text classification tasks such as sentiment analysis, metaphor detection, and
topic categorization have also been used in the context of word embedding evalua-
tion [Schnabel et al., 2015, Tsvetkov et al., 2015].

Extrinsic evaluations are reflecting the performance of a word embedding in a
downstream scenario, but, similarly to intrinsic evaluations, they are prone to limi-
tations which make them insufficient as a sole basis for evaluating word embeddings.
The first limitation is shared to some extent between intrinsic and extrinsic evalu-
ations and comes from the fact that different NLP tasks might highly differ in their
nature. In fact, word embedding performance does not necessarily correlate across
tasks [Schnabel et al., 2015]. This makes it impossible to prescribe a single best-
performing solution for all NLP tasks. For instance, word embeddings suitable for
part of speech tagging might perform no better than random embeddings on sen-
timent analysis. Conclusions drawn from such evaluations should be limited to the
specific task or the group of similar tasks and cannot be generalised to other tasks
with different nature.

The second limitation arises from the fact that it is more difficult to control
all the factors in extrinsic evaluation frameworks. In a typical NLP system, there
are many parameters that play role in the final performance; sometimes even small
changes in the configuration might drastically change the results. This makes it more
difficult to draw general reliable conclusions from extrinsic evaluations. An embed-
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ding model performing well in a specific system configuration, for instance in senti-
ment analysis, might not necessarily performwell in other sentiment analysis systems
or even different configurations of the same model. Therefore, one should be very
careful with the use of evaluation benchmarks, and more importantly, with the con-
clusions they make. It is always recommended to employ a mixture of intrinsic and
extrinsic evaluations, and on a diverse range of datasets and tasks.
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Graph Embeddings
Graphs are ubiquitous data structures. They are often the preferable choice for
representing various type of data, including social networks, word co-occurrence
and semantic networks, citation networks, telecommunication networks, molecu-
lar graph structures and biological networks. Therefore, analyzing them can play a
central role in various real-world scenarios, such as drug design, friendship recom-
mendation in social networks, semantic modeling in language, and communication
pattern extraction.

For instance, consider Zachary’s famous Karate Club social network [Zachary,
1977] in Figure 4.1 (left). The network has 34 members which are shown as nodes in
the graph. Edges in this graph denote if any pair of members had interactions outside
of the club. Representing this social network as a graph facilitates its interpretation
and analysis. With the first look, one can quickly have an idea on the rough number
of friends each member in this network has by average, identify communities in the
network, or find those members (nodes) that have so many friends and are central in
a community or bridge different communities.

The primary challenge in graph embedding is to find a way to represent the
data stored in a graph in a machine-interpretable or mathematical format which
would allow the application of machine learning models. In other words, the high-
dimensional, non-Euclidean graph structure needs to be encoded into a numerical
or feature-based form.

We view the task of graph embedding from two different perspectives:

1. Node embedding, in which the aim is to embed the nodes of a graph into a
continuous semantic space with the objective of preserving relative “distances”
(to be discussed in the following section).

2. Relation embedding, in which the edges in the graph, i.e., the relationships
between nodes, are the target of attention for embedding. We further cate-
gorise relation embedding techniques into knowledge-based relation embed-
ding models (Section 4.2 and unsupervisedmodels (Section 4.3).
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Figure 4.1: Zachary Karate Club graph (left) and the corresponding embedding space
computed by Graph Convolutional Networks (GCN). Communities, as detected by
modularity-based clustering [Brandes et al., 2008], are shown by different colors.
Graph embedding tries to encode properties of graph nodes (such as neighbour-
hood) in a continuous multidimentional space (in this case 2D). Figure from Kipf
and Welling [2017].

4.1 NODE EMBEDDING

Going back to Zachary’s Karate graph in Figure 4.1 (left), a standard clustering algo-
rithm would detect four communities, shown by different colors. On the right side, a
2D embedding space is shown which represents nodes in the same graph, calculated
using a recent node embedding technique, namely Graph Convolutional Networks
(cf. Section 4.1.4). Clearly, the embedding has done a good job in preserving the
structure of this graph, i.e., clusters and their relative positioning.

Representing graph nodes as numerical vectors1 in continuous spaces can have
many advantages, such as facilitating the visualization and analysis of global position
of a node or a node’s neighbours. For instance, one can easily compute the “similar-
ity” between two nodes or obtain a clustering of the nodes (similar to the one shown
in the figure) by using a simple clustering technique based on distances in the space.

Traditional node representation techniques focused on hand-crafted features
such as graph statistics (e.g., node degree), motifs [Milo et al., 2002], graph kernels
[Vishwanathan et al., 2010], or carefully designed features to model sub-structures
[Liben-Nowell and Kleinberg, 2003]. Like other feature-engineered models, this ap-
proach suffers from unreliable adaptability; features might not be applicable to a new
domain and thinking of new features is an arduous process.

Recent years have seen a surge of techniques that try to bypass the need for
feature engineering. In fact, the trend in graph representation is analogous to that of

1For instance, the nodes in the Karate’s graph example are represented by a vector of two numbers.
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word modality: directly embed units as low-dimensional vectors into a continuous
imaginary space without any pre-processing or feature extraction. In graph embed-
ding, units are nodes (in contrast to words) and the objective is to preserve structural
properties of the graph, such as node neighbourhood, rather than semantic or syn-
tactic properties.

Graph embedding techniques can be broadly divided into three main cate-
gories:

1. Matrix factorization-based methods

2. Random-walk based algorithms

3. Graph neural networks

4.1.1 MATRIX FACTORIZATIONMETHODS
Similarly to word representations, conventional techniques to node representation
all relied on extracting a set of pairwise similarity statistics for nodes coupled with
a dimensionality reduction. For the case of words, co-occurrence counts are taken
as a proxy for estimating the similarity of words. Given that co-occurrence matrices
are generally large, a dimensionality reduction needs to be applied to compress word
vectors into fewer number of dimensions (cf. Chapter 2). Similar statistical measures
can be used for estimating node similarity in graphs. For instance, the existence of
an edge between two nodes can denote their similarity. Therefore, the adjacency
matrix of a graph (which expresses the edges in the graph) can be taken as a measure
to estimate the pairwise similarities among the graph’s nodes.

This class of techniques are referred to as Matrix Factorization (MF) because
they represent graph properties, such as pairwise node similarity, as a matrix and
compute embeddings for individual nodes by factorizing this matrix. The final goal
in this domain is to compute embeddings for nodes such that the similarity between
these embeddings (often computed as inner product) is highly correlated with the
estimates given by graph-based node similarity measures. MF methods are gener-
ally inspired by dimensionality reduction techniques, such as Laplacian Eigenmaps
[Belkin and Niyogi, 2003], Locality Preserving Projections [He and Niyogi, 2004],
and Principal Component Analysis [Pearson, 1901].

The main distinguishing factor between different MF methods lies in their way
of estimating the similarity between nodes. Various statistical measures have been
proposed. Earlier ones usually model only first-order relationships between nodes,
such as edges denoted by adjacency matrix used by Graph Factorization algorithm
[Ahmed et al., 2013], whereas more recent works try to capture higher-order rela-
tionships in terms of some power of the adjacencymatrix, such as GraRep [Cao et al.,
2015], or Jaccard neighbourhood overlaps, such as HOPE [Ou et al., 2016a].
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Figure 4.2: Representations learned for different configurations of Node2vec: left q =
2, right q = 1 (p = 1 for both settings). Graph nodes correspond to characters in the
novel Les Misérables and edges connect coappearing characters. Representation are
clustered using k-means; clusters shown by colors. Using controlled random walks
in Node2vec, one can adjust the notion of similarity: macro or structural similarity
in the left sub-figure and micro or homophily (or local) in the right sub-figure. Figure
from [Grover and Leskovec, 2016].

4.1.2 RANDOMWALKMETHODS
Themeasure of node similarity used byMF techniques is deterministic in that it relies
on a set of fixed statistical features. MF is generally not scalable especially for very
large networks for which gigantic matrices need to be constructed. Random Walk
(RW) based methods are different in that they leverage a stochastic way of deter-
mining the similarity.

The core idea in this branch is to perform a series of truncated randomwalks on
the graph, sampling nodes seen during each walk in order to transform the graph’s
structure into a collection of paths (node sequences). These paths can be viewed
as artificial sentences. Similarly to natural language in which semantically similar
words tend to co-occur frequently, artificial sentences carry information about sim-
ilar (topologically related) vertices in the graph.

Earlier methods [Pilehvar et al., 2013, Hughes and Ramage, 2007] take the di-
rect normalized visit probabilities as vectors. These RW-based node representations
significantly outperformed conventional deterministic graph analysis approaches
(such as normalized graph distance [Wu and Palmer, 1994]) when used for encoding
semantic networks in awide range of lexical semantic applications [Pilehvar andNav-
igli, 2015]. This was especially noticeable when the obtained representations were
compared using a rank-based distance measure, instead of the widely-used Cosine
distance [Pilehvar et al., 2013]. However, conventional RW-based measures suffer
from a major limitation: high dimensionality.

Newer RW-based techniques employ neural networks to address the di-
mensionality issue. DeepWalk [Perozzi et al., 2014] and Node2vec [Grover and
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Leskovec, 2016] are two prominent techniques in this branch. The core idea here
is to benefit from the efficiency of Word2vec algorithms (cf. Section 3.2) for node
representation. Word2vec receives sentences as its input and computes embeddings
for its individual words. The gist of DeepWalk is to transform structure of a graph
to a series of sequences, or artificial sentences whose “words” are nodes. Random
walks fit very effectively in this framework. These sentences are then used as input
to the Skip-gram model and embeddings for individual words (i.e., graph nodes) are
computed.

Node2vec [Grover and Leskovec, 2016] is an extension of DeepWalk which
provides a more flexible random walk that can control the notion of node similarity:
homophily vs. structural. Figure 4.2 shows representations computed using different
configurations of Node2vec. Specifically, Node2vec introduces two “bias” parame-
ters which control the behaviour of random walks: p and q. The parameters control
the tendency of the walk to stay in the neighbourhood or to leave that in exploration
of other parts of the graph.

Imagine a walk moving from node u to v. The random choice of next node to
visit from v is biased by an unnormalized transition probabilityα.Withα = 1 thewalk
visits a node which is at the same distance 1 of the starting node u. With probability
α = 1/q, the walk moves deeper in the network; setting q to a small value would bias
the walk towards “outward” nodes, i.e., nodes that have distance 2 from starting node
u. Parameter p performs a complementary role. The walk revisits the previous node,
i.e., u, immediately with probability 1/p. This keeps the walk close to the starting
point; therefore, samples mostly comprise of nodes within a small locality. This gives
a local view of the graph, capturing communities or homophily.

The two walk strategies can also be resembled by DFS (depth-first search) and
BFS (breadth-first search). Setting p and q to model microscopic view of the neigh-
bourhood is similar in merit to BFS. In contrast, DFS tends to move further away
from the source, modeling the macroscopic view of the neighbourhood.

Structural roles. Most node embedding approaches that are covered in this
book have the underlying assumption that nearby nodes in the graph should be
associated with similar embeddings, i.e., they should be placed in close prox-
imity of each other in the semantic space. We can think of tasks in which the
“role” played by a node in a graph is at the center of attention rather than rel-
ative position. Node2vec provides a solution for this using the “bias” terms (see
Figure 4.2). For instance, for a target task it might be important to model simi-
larities between nodes that act as bridges between different communities, which
might not necessarily be close to each other in the graph. Embedding “structural
roles” of nodes has been an active field of research with several proposals, such
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Figure 4.3: EmbeddedCora citation network [McCallum et al., 2000] before (left) and
after (right) enriching the graph with additional edges. The Cora dataset contains
2708 machine learning papers linked by citation relationships into a graph. Docu-
ments belong to 7 different categories, shown by different colors. Graph embedding
carried out using DeepWalk and dimensionality reduction using t-SNE. Reprint from
[Kartsaklis et al., 2018].

as Struc2vec [Ribeiro et al., 2017], GraphWave [Donnat et al., 2018], DRNE [Tu
et al., 2018], xNetMF [Heimann et al., 2018].

It is also worthwhile to mention another technique, called LINE [Tang et al.,
2015], which is not strictly RW-based, but closely related. LINE combines two dif-
ferent objectives to learn node embeddings: first-order and second-order. The first-
order objective is analogous to the BFS search in Node2vec. The second-order ob-
jective forces nodes with similar neighbourhoods to have similar embeddings. The
latter objective assumes that nodeswithmany commonneighbours are probably sim-
ilar to each other. In other words, if we take the neighours of a node as its context,
nodes with similar distributions over “contexts” are deemed to be similar.

4.1.3 INCORPORATING NODE ATTRIBUTES
It is usual for graph nodes to be associated with some attributes. Graphs in NLP are
no exception. For instance, nodes (synsets) in WordNet are associated with various
forms of textual data: synonymous terms, gloss (definition), and example sentences.
The above techniques all make use of graph structure only, ignoring all these infor-
mation.

Graph attributes, such as node content, can be a used as a complementary
source of information to the usually non-optimal structure of the networks. For
instance, consider the synsets containing the frequently-used meanings of com-
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puter_monitor and TV. The two synsets are separated by 10 nodes in WordNet 3.0
which is a large distance given that the maximum depth of a nominal leaf node in
WordNet is no more than 20. However, these are similar concepts that are also de-
fined in WordNet with similar glosses.2. A node embedding technique that merely
takes into account the structure ofWordNetwould place these two semantically simi-
lar concepts at distance regions in the space.However, leveraging glosseswould force
these representations to look more similar, i.e., it pulls together the corresponding
points in the space.

The non-optimality of graph structures has been highlighted in other works.
For instance, Kartsaklis et al. [2018] showed for two different graphs that embedding
the nodes based on structure only might not lead to desirable results. They proposed
a technique for using node attributes for enriching networks with additional edges.
They showed that an enriched graph can significantly improve the performance of
DeepWalk in different NLP tasks. Figure 4.3 shows this improvement on one of the
graphs, i.e., Cora citation network.

There are several variants of RW-based models that try to augment the struc-
tural data with other attributes, such as node content and label information. TriDNR
[Pan et al., 2016], DDRW [Li et al., 2016], and DANE [Gao and Huang, 2018] are
instances of such models. TriDNR is one of the most prominent techniques in this
branch. The model follows RW-based methods and captures structural node rela-
tionships using randomwalks. However, it additionally exploits the content of nodes
as well as edge labels for improving representations. The authors of TriDNR experi-
mented with the document classification task in two citation networks in which pa-
pers are nodes and their titles are the content within nodes. They showed that signif-
icant improvements can be obtained by incorporating the additional attributes which
are ignored by strucutre-only techniques such as DeepWalk and Node2vec.

Moreover, many of the graphs in NLP are actually hierarchies that are trans-
formed into graphs. WordNet is an example of a hierarchical tree structure with ad-
ditional lexical-semantic links. Synsets (nodes) at higher levels refer to more abstract
concepts whereas they tend to be more specific and fine-grained deeper in the tree.
Representing such structures as graphs (especially with non-directed edges) would
discard all these semantic information. As a solution to this problem,Nickel andKiela
[2017] propose representing nodes as Poincaré balls3 which takes into account both
similarity and the hierarchical structure of the taxonomy given as input4.

One might be interested in learning coarse node representations, i.e., to rep-
resent nodes at larger scales of relationships and their membership in hierarchies of

2TV: “an electronic device that receives television signals and displays them on a screen”, and com-
puter_monitor: “a device that displays signals on a computer screen”

3A Poincaré ball is a hyperbolic space in which all points are inside the unit disk.
4WordNet is used as the reference taxonomy in the original work.
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Figure 4.4: A toy graph with 8 nodes (|V | = 8) on the left and the general overview
of an autoencoder-based node embedding technique on the right. For a target node
(“3” in the figure) a context vector is extracted (simple adjacency statistics in this
case). Autoencoder compresses the context vector into a much smaller embedding
(with dimensionality d ≪ |V |) for the corresponding node (shown at the middle).
Autoencoder-based models mainly differ in their context vector or in the architec-
ture of the autoencoder.

communities. Walklets [Perozzi et al., 2017] is an approach for multi-scale represen-
tation that facilitates this goal. The approach is similar to DeepWalk with the only
difference that certain nodes are skipped from paths, in order to learn higher-scale
relationships or coarse representations as if the focus area in graph is larger.

4.1.4 GRAPHNEURAL NETWORKMETHODS
Given the dominance of deep learning, it is not surprising to expect node embedding
techniques that are based on neural networks. In fact, despite the short age, there
is an extensive branch of techniques that either directly make use of various deep
learning models, such as autoencoders, for node representation or are inspired by
ideas borrowed from deep learning, such as convolution operations.

This section provide a brief overview of the literature in neural network (NN)
base graph embedding. We can be broadly classify NN-based models into two main
categories: autoencoder-based techniques and graph convolutional networks.

Autoencoder-based models
Autoencoders are usually the first choice among neural network architectures for
dimensionality reduction. The network, learns, in an unsupervised manner, to en-
code a given representation into a dense embedding from which it can reconstruct
the same input. This property of autoencoders makes them a suitable candidate for
substituting matrix factorization techniques.
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Figure 4.4 depicts the general procedure of a simple autoencoder-based node
embeddingmodel. Generally, thesemodels comprise two stages in the pipeline. First,
they analyze the structure of the network in order to extract a context vector for each
node, which can characterize its local (or higher order) neighbourhood. Then, an
autoencoder is used to compress the context vector into a dense low-dimensional
embedding.

SDNE [Wang et al., 2016] and DNGR [Cao et al., 2016] are two of the most
prominent models in this class. SDNE constructs the context vector simply based
on the adjacency matrix (similar to what shown in Figure 4.4). DNGR leverages ran-
dom walks for computing the context vector. Similarly to DeepWalk and Node2vec,
DNGR carries out a series of truncated random walks to estimate pointwise mutual
information between a target node and all other nodes in the graph. This is taken as
a node’s context vector and fed for compression to the autoencoder network. DNGR
is similar to ADW [Pilehvar et al., 2013] in the construction of context vector5. How-
ever, ADW simply takes the context vector, without any compression, as the final
representation whereas DNGR compresses these into smaller embeddings.

One big limitation of autoenoder-based models lies in their global context vec-
tor, which is essentially equal in size to the number of nodes in the graph. This can
make the procedure very expensive for large graphs. For instance, it might be man-
ageable for relatively smaller graphs, such as WordNet with around 120K nodes, to
be embedded using autoencoder-based models. However, for larger networks, such
as BabelNet’s semantic network that has millions of nodes, autoencoder-based will
certainly suffer from lack of scalability (very high number of parameters in the net-
work).

Moreover, most of the node embedding techniques that are discussed so far are
by design, transductive [Hamilton et al., 2017a], i.e., it is not straightforward to gen-
erate embeddings for new nodes (which are not seen during training) once the train-
ing is over, unless additional training is carried out. This can be limiting for evolving
graphs, e.g., BabelNet (Live version) which is constantly updated with new concepts
that are created by Wikipedians. A trnsductive model would fail at keeping up with
the updates as the training has to be carried out from scratch for a new node embed-
ding to be computed.

Convolution-based models
Driven by the ideas from computer vision, convolutional methods try to address
the scalability and generalizability issues of previous techniques by resorting to lo-
cal neighbourhood rather than global information. The main reason behind naming
this branch as “convolutional” lies in the process of combining neighbouring nodes’

5ADW takes the Personalized PageRank vector for each node as its corresponding representation
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embeddings to construct a target embedding is analogous to convolution operation
in computer vision CNNs [Hamilton et al., 2017a]. Graph Convolutional Networks
[Kipf andWelling, 2017,GCN] andGraphSAGE [Hamilton et al., 2017b] are two of
the most prominent models in this branch.

The basic idea is simple: to compute the embedding for a target node, look at
the embeddings of neighbouring nodes. The neighbouring nodes are in turn embed-
ded using their neighbours. This process is usually carried out in an iterative manner
(the number of iterations is often referred to as “depth”).

More specifically, for a target node t and in each iteration, aggregate the em-
beddings of neighbouring nodes. The aggregation can be a simple element-wise
mean, such as the case for GCNs. The resulting aggregated embedding is then com-
bined with the previous estimate of t’s embedding (from the previous iteration).
GCNs use a weighed sum for this stage. Various models usually differ in how they
define the aggregation and combination. For instance, GraphSAGE uses concatena-
tion for its aggregation and test max-pooling networks and LSTMs as combination
functions.

Thanks to the local nature of context lookup in convolutional models (as op-
posed to autoencoder-based models that require the global associations for each
node with respect to all the other nodes in the graph) they can address both gen-
eralizability and scalability issues. An embedding for a new node can be easily com-
puted based on learned aggregation and combination functions and by looking up
the existing embeddings for neighbouring nodes.

4.2 KNOWLEDGE-BASED RELATION EMBEDDINGS
This section provides a review of those representation techniques targeting concepts
and named entities from knowledge bases only. A large body of research in this area
takes knowledge graphs (or semantic networks) as signals to construct representa-
tions of entities (and relations), specifically targeted to the knowledge base comple-
tion task6.

A pioneering work in this area is TransE [Bordes et al., 2013], a method to
embed both entities and relations. In this model relations are viewed as translations
which operate in the same vector space as entities. Given a knowledge base repre-
sented as a set of triples {(e1, r, e2)}), where e1 and e2 are entities and r the relation
between them, the main goal is to approach the entities in a way that e⃗1 + r⃗ ≈ e⃗2 for
all triples in the space (i.e., ∀(e1, r, e2) ∈ N ). Figure 4.5 illustrates themain idea behind
the model. This objective may be achieved by exploiting different learning architec-
tures and constraints. In the original work of Bordes et al. [2013], the optimization is

6Given an incomplete knowledge base as input, the knowledge base completion task consists of predicting
relations which were missing in the original resource.
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Figure 4.5: From a knowledge graph to entity and relation embeddings. Illustration
idea is based on the slides of Weston and Bordes [2014].

carried out by stochastic gradient descent with an L2 normalization of embeddings
as an additional constraint. Following this underlying idea, various approaches have
proposed improvements of different parts of the learning architecture:

• TransP [Wang et al., 2014b] is a similar model that provides improvements on
the relational mapping by dealing with specific properties present in the knowl-
edge graph.

• Lin et al. Lin et al. [2015] proposed to learn embeddings of entities and relations
in separate spaces (TransR).

• Ji et al. [2015] introduced a dynamic mapping for each entity-relation pair in
separated spaces (TransD).

• Luo et al. [2015] put forward a two-stage architecture using pre-trained word
embeddings for initialization.

• A unified learning framework that generalize TransE and NTN [Socher et al.,
2013a] was presented by Yang et al. [2015].

• Finally, Ebisu and Ichise [2018] discussed regularization issues from TransE
and proposed TorusE, which benefits from a new regularizationmethod solving
TransE’s regularization problems.

These have been some of the most relevant works on knowledge base embed-
dings in recent years, but given the multitude of papers on this topic, this review was
by no means comprehensive. A broader overview of knowledge graph embeddings,
including more in-depth explanations, is presented by Cai et al. [2018] or Nguyen
[2017], the latter focusing on the knowledge base completion task.
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4.3 UNSUPERVISED RELATION EMBEDDINGS
Modeling the interaction of a pair of concepts has been widely investigated since at
least Turney [2005]. For instance, intuitively for a human the relation between Paris
and France, and Madrid and Spain are similar, as they can both be integrated in a
larger set of capital-of relations. These relations have been attempted to store in
knowledge resources, as we showed in Section 2.3. However, the discrete nature of
these relations have motivated a new field of study, which is their representation as
part of continuous vector spaces. While there are approaches which do exactly this
inside knowledge resources (see Section 4.2), it is hard to encode the whole nature
of relational knowledge that human possesses in the well-defined relations available
in existing knowledge resources.

Another way to model these relations between concepts is to leverage a text
corpus, as is the case for word embeddings (see Chapter 3). In fact, a common way
to model these relations is precisely via standard word embeddings [Mikolov et al.,
2013d], often referred to as word analogies.

Word analogy. Word analogy has been very popular in NLP since Mikolov
et al. [2013d]. In this work it was shown howWord2vec word embeddings were
able to capture linguistic relationships going beyond purely semantic similarity
by exploiting word vector differences. For instance, ⃗king − m⃗an+ ⃗womanwould
result in a vector that is close to ⃗queen.

Lately there have been some works aiming at understanding where these
analogies come from. In general, it has been shown that word embeddings are
not actually recovering general relations, but rather some specific ones for which
similarity or proximity in the vector space plays an important role [Levy et al.,
2014, Linzen, 2016, Rogers et al., 2017, Nissim et al., 2019]. For instance,
Bouraoui et al. [2018] shows how word embeddings can capture relations such
us superlative or capital of but then other relations cannot be retrieve by simple
arithmetic operations from word embeddings. For a more detailed overview of
the properties of word analogies, we would recommend the work of Allen and
Hospedales [2019].

Co-occurrence based models. In one of the earlier works, Turney [2005] pro-
posed a singular value decomposition (SVD) model. This model encoded different
linguistic patterns of words, and how they are connected. A similar more recent work
is that of Riedel et al. [2013], who represented word pairs as vectors, in this case
combining co-occurrence statistics with information encoded in a knowledge graph.
More recently, Jameel et al. [2018] proposed an unsupervisedmethod for learning re-
lation vectors which is inspired by the GloVe word embedding model. Their training
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Figure 4.6: Word analogies in Word2vec. Image borrowed from Mikolov et al.
[2013c]).

objective is to learn vector representations rab of word pairs and vector representa-
tions w̃c of context words, such that the dot product rab · w̃c predicts the strength of
association between occurrences of the context word c and the word pair (a, b) in a
sentence. For this purpose, they considered a number of generalizations of PMI to
three arguments. A simpler and more efficient alternative was proposed in Espinosa-
Anke and Schockaert [2018], where relation vectors were learned by averaging the
word vectors of the context words appearing in sentences that contain the word
pair (a, b) and then using a conditional autoencoder. These averaging methods have
been further refined by exploiting a latent variable models that assign probabilities
to words as per their association to the given word pair [Camacho-Collados et al.,
2019].

Predictivemodels. The aforementionedmethods have the disadvantage that they
can only learn relation vectors for pairs of words that co-occur in the same sentence
sufficiently often. To address this, a number of methods have been proposed which
learn word vectors that are aimed at modelling relational properties [Washio and
Kato, 2018b,a, Joshi et al., 2019]. Specifically, these works train a neural network
that maps the concatenation of two word vectorswa ⊕wb to a vector rab which rep-
resents the relation between the two corresponding words a and b. This network is
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trained such that rab captures the contexts in which the word pair appears, where
contexts correspond to learned vector encodings of dependency paths [Washio and
Kato, 2018b] or LSTM-based neural encodings of surface patterns [Washio andKato,
2018a, Joshi et al., 2019].

4.4 APPLICATIONS AND EVALUATION
This section provides a brief overview of the most commonly practised evaluation
measures for graph embedding techniques. The discussion is divided based on the
embedding type into node embedding and relation embedding. We also briefly dis-
cuss some of the applications of these embeddings.

4.4.1 NODE EMBEDDING
Evaluation of node embedding is usually centered around the notion of similarity be-
tween node embeddings. There are many evaluation setups, few of which are briefly
discussed below.

• Nodeclassification.Oneof themajor applications of node embeddings is node
classification, i.e., assigning labels to nodes based on the rules learned from the
labeled subset nodes. This procedure can be viewed as label propgatation in the
graph. Given its supervised nature and ease of evaluation, node classification is
often one of the first choices for evaluating node embeddings. For instance, one
can view WordNet as a graph and compute embeddings for its nodes (synsets).
Having domain labels for a set of synsets, the task would be to assign labels to
unlabeled synsets.

• Node clustering. This is similar to node classification with the difference that
labels are not pre-defined. Node clustering often involves computing similari-
ties between nodes and grouping them based on their similarities. One applica-
tion of node clustering would be to reduce the sense granularity of WordNet by
grouping together those senses of a word that are similar.

• Node ranking. Given a target node, the task of node ranking consists of rec-
ommending the topK nodes according to a certain criteria, e.g., similarity. For
instance, what are the three most semantically similar synsets to a given synset
in WordNet. Node ranking has a wide range of applications, just to name a few,
friend recommendation in social networks, question answering, and person-
alised advertisement.

• Graph visualization. The goal is to visualize a given graph on a low-
dimensional space, usually 2D, to get a high-level overview of the properties of
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the graph. Nodes belonging to different categories can be shown with different
colors. Figure 4.1 is an example of visualization. Given that node embeddings
are usually of high dimensionality, which is not directly visualizable (> 3), it is
necessary to carry out dimensionality reduction techniques, such as Principal
Component Analysis [Jolliffe, 1986, PCA] and t-distributed Stochastic Neigh-
bor Embedding [Maaten and Hinton, 2008, t-SNE] on the node embeddings,
before visualizing the node embedding. Visualization can serve as a qualitative
testbed for evaluating node embeddings. Moreover, it can have applications in
other fields, such as software engineering, and biology, social network analysis,
and bioinformatics [Herman et al., 2000].

• Network compression. Reconstruction error is a commonway to quantify the
ability of node embedding techniques in encoding structural information of a
graph. According to this procedure, given the node embeddings computed for a
graph, the graph is reconstructed. Reconstruction error is then computed as the
difference between the original and reconstructed graphs. For instance, recon-
struction can be viewed as predicting the edges of the original graph, and the
error in this case can be directly computed as the accuracy of this prediction
task. It is shown by different researchers [Wang et al., 2016, Ou et al., 2016b]
that typical graphs can be reconstructed to a good accuracy from their node em-
beddings. This way, node embeddings can be considered as compressed forms
of the topological information encoded in structure of graphs and can be effec-
tively used to store them.

4.4.2 RELATION EMBEDDING
The main application of relation embeddings is link prediction. It is often the case
that the richness of relations in an underlying semantic network has a direct impact
on the performance of a model using that resource [Pilehvar et al., 2013, Agirre and
Soroa, 2009]. Relations in networks are often constructed according to observed in-
teractions between nodes. For instance,WordNet’s graph is usually enrichedwith re-
lations extracted frommanually disambiguated glosses. Therefore, given that glosses
cannot contain all possible semantic relationships, the resulting semantic network
can still be incomplete.

The task in link prediction consists of predicting missing edges in a graph. This
can be extended to that of verifying existing edges in the graph, if the graph is ex-
pected to have spurious edges due to its construction procedure. Other applications
of link prediction include friend suggestion in social friendship networks or biologi-
cal network analysis [Goyal and Ferrara, 2018].

As far as unsupervised relation embeddings are concerned (cf. Section 4.3),
their main application has been to model relationships of pairs of words. As more
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downstream applications, they have been integrated into pipelines for language un-
derstanding tasks such as reading comprehension [Joshi et al., 2019], text classifica-
tion [Espinosa-Anke and Schockaert, 2018, Camacho-Collados et al., 2019] or rela-
tion extraction [Baldini Soares et al., 2019].
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C H A P T E R 5

Sense Embeddings
In this chapter we introduce those representations aiming to model unambiguous
lexical meaning.1 These representations emerge due to one of the main limitations
of word-level representation techniques, which is themeaning conflation deficiency.

Meaning Conflation Deficiency. The prevailing objective of representing
each word type as a single point in the semantic space has a major limitation:
it ignores the fact that words can have multiple meanings and conflates all these
meanings into a single representation. The work of Schütze [1998] is one of the
earliest to identify the meaning conflation deficiency of word vectors. Having
different (possibly unrelated) meanings conflated into a single representation can
hamper the semantic understanding of an NLP system that uses these at its core.
In fact, word embeddings have been shown to be unable in effectively capturing
different meanings of a word, even when these meanings occur in the underlying
training corpus [Yaghoobzadeh and Schütze, 2016]. The meaning conflation can
have additional negative impacts on accurate semantic modeling, e.g., seman-
tically unrelated words that are similar to different senses of a word are pulled
towards each other in the semantic space [Neelakantan et al., 2014, Pilehvar and
Collier, 2016]. For example, the two semantically-unrelatedwords rat and screen
are pulled towards each other in the semantic space for their similarities to two
different senses ofmouse, i.e., rodent and computer input device. See Figure 5.1
for an illustration.Moreover, the conflation deficiency violates the triangle in-
equality of euclidean spaces, which can reduce the effectiveness of word space
models [Tversky and Gati, 1982].

In order to alleviate this deficiency, a new direction of research has emerged
over the past years, which tries to directly model individual meanings of words. In
this survey we focus on this new branch of research, which has some similarities
and peculiarities with respect to word representation learning. There are two main
branches to model senses, unsupervised (Section 5.1) or knowledge-based (Section
5.2). In Section 5.3 we additionally present common evaluation procedures and ap-
plications of such representations.

1This chapter is largely inspired by our recent survey [Camacho-Collados and Pilehvar, 2018] - Sections 3 and
4.
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Figure 5.1: An illustration of the meaning conflation deficiency in a 2D semantic
space around the ambiguous word mouse (dimensionality was reduced using PCA;
visualized with the embedding projector of Tensorflow). Having the word, with its
different meanings, represented as a single point (vector) results in pulling together
of semantically unrelated words, such as computer and rabbit.

5.1 UNSUPERVISED SENSE EMBEDDINGS

Unsupervised sense representations are constructed on the basis of information ex-
tracted from text corpora only. Word sense induction, i.e., automatic identification
of possible meanings of words, lies at the core of these techniques. An unsupervised
model induces different senses of a word by analysing its contextual semantics in
a text corpus and represents each sense based on the statistical knowledge derived
from the corpus. Depending on the type of text corpus used by the model, we can
split unsupervised sense representations into two broad categories: (1) techniques
that exploit monolingual corpora only (Section 5.1.1), and (2) those exploiting mul-
tilingual corpora (Section 5.1.2).

5.1.1 SENSE REPRESENTATIONS EXPLOITINGMONOLINGUAL
CORPORA

This section reviews sense representation models that use unlabeled monolingual
corpora as their main resource. These approaches can be divided into two main
groups:

1. clustering-based (or two-stage) models [Van de Cruys et al., 2011, Erk and
Padó, 2008, Liu et al., 2015a], which first induce senses and then learn repre-
sentations for these (Section 5.1.1),
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Figure 5.2: Unsupervised sense representation techniques first induce different
senses of a given word (usually by means of clustering occurrences of that word in a
text corpus) and then compute representations for each induced sense.

2. joint training [Li and Jurafsky, 2015, Qiu et al., 2016], which perform the in-
duction and representation learning together (Section 5.1.1).

Two-Stage Models
The context-group discrimination of Schütze [1998] is one of the pioneering works
in sense representation. The approach was an attempt to automatic word sense dis-
ambiguation in order to address the knowledge-acquisition bottleneck for sense an-
notated data [Gale et al., 1992] and reliance on external resources. The basic idea of
context-group discrimination is to automatically induce senses from contextual sim-
ilarity, computed by clustering the contexts in which an ambiguous word occurs.
Specifically, each context C of an ambiguous word w is represented as a context
vector v⃗C , computed as the centroid of its content words’ vectors v⃗c (c ∈ C). Con-
text vectors are computed for each word in a given corpus and then clustered into a
predetermined number of clusters (context groups) using the ExpectationMaximiza-
tion algorithm [Dempster et al., 1977, EM]. Context groups for the word are taken as
representations for different senses of theword. Despite its simplicity, the clustering-
based approach of Schütze [1998] constitutes the basis for many of the subsequent
techniques, which mainly differed in their representation of context or the under-
lying clustering algorithm. Figure 5.2 depicts the general procedure followed by the
two-stage unsupervised sense representation techniques.

Given its requirement for computing independent representations for all in-
dividual contexts of a given word, the context-group discrimination approach is
not easily scalable to large corpora. Reisinger and Mooney [2010] addressed this
by directly clustering the contexts, represented as feature vectors of unigrams, in-
stead of modeling contexts as vectors. The approach can be considered as the first
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new-generation sense representation technique, which is often referred to asmulti-
prototype. In this specificwork, contexts were clustered usingMixtures of vonMises-
Fisher distributions (movMF) algorithm. The algorithm is similar to k-means but per-
mits controlling the semantic breadth using a per-cluster concentration parameter
which would better model skewed distributions of cluster sizes.

Similarly, Huang et al. [2012] proposed a clustering-based sense representation
technique with three differences: (1) context vectors are obtained by a idf-weighted
averaging of their word vectors; (2) spherical k-means is used for clustering; and (3)
most importantly, occurrences of a word are labeled with their cluster and a second
pass is used to learn sense representations. The idea of two-pass learning has also
been employed by Vu and Parker [2016] for another sense representation modeling
architecture.

Sense representations can also be obtained from semantic networks. For in-
stance, Pelevina et al. [2016] constructed a semantic graph by connecting each word
to the set of its semantically similar words. Nodes in this network were clustered us-
ing the Chinese Whispers algorithm [Biemann, 2006] and senses were induced as a
weighted average of words in each cluster. A similar sense induction technique was
employed by Sense-aware Semantic Analysis [Wu and Giles, 2015, SaSA]. SaSA fol-
lows Explicit Semantic Analysis [Gabrilovich and Markovitch, 2007, ESA] by repre-
senting aword usingWikipedia concepts. Instead of constructing a nearest neighbour
graph, a graph of Wikipedia articles is built by gathering all related articles to a word
w and clustering them. The sense induction step is then performed on the semantic
space of Wikipedia articles.

Joint Models
The clustering-based approach to sense representation suffers from the limitation
that clustering and sense representation are done independently from each other
and, as a result, the two stages do not take advantage from their inherent similarities.
The introduction of embedding models was one of the most revolutionary changes
to vector space models of word meaning. As a closely related field, sense representa-
tions did not remain unaffected.Many researchers have proposed various extensions
of the Skip-gram model [Mikolov et al., 2013a] which would enable the capture of
sense-specific distinctions. A major limitation of the two-stage models is their com-
putational expensiveness2. Thanks to the efficiency of embedding algorithms and
their unified nature (as opposed to the two-phase nature of more conventional tech-
niques) these techniques are generally efficient. Hence, many of the recent tech-
niques have relied on embedding models as their base framework.

2For instance, the model of Huang et al. [2012] took around one week to learn sense embeddings for a 6,000
subset of the 100,000 vocabulary on a corpus of one billion tokens [Neelakantan et al., 2014].
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Neelakantan et al. [2014] was the first to propose a multi-prototype extension
of the Skip-gram model. Their model, called Multiple-Sense Skip-Gram (MSSG), is
similar to earlier work in that it represents the context of a word as the centroid of
it words’ vectors and clusters them to form the target word’s sense representation.
Though, the fundamental difference is that clustering and sense embedding learn-
ing are performed jointly. During training, the intended sense for each word is dy-
namically selected as the closest sense to the context and weights are updated only
for that sense. In a concurrent work, Tian et al. [2014] proposed a Skip-gram based
sense representation technique that significantly reduced the number of parameters
with respect to the model of Huang et al. [2012]. In this case, word embeddings in
the Skip-gram model are replaced with a finite mixture model in which each mix-
ture corresponds to a prototype of the word. The EM algorithm was adopted for the
training of this multi-prototype Skip-gram model.

Liu et al. [2015b] argued that the above techniques are limited in that they con-
sider only the local context of a word for inducing its sense representations. To ad-
dress this limitation, they proposed Topical Word Embeddings (TWE) in which each
word is allowed to have different embeddings under different topics, where topics
are computed globally using latent topic modelling [Blei et al., 2003a]. Three vari-
ants of the model were proposed: (1) TWE-1, which regards each topic as a pseudo
word, and learns topic embeddings and word embeddings separately; (2) TWE-2,
which considers each word-topic as a pseudo word, and learns topical word embed-
dings directly; and (3) TWE-3, which assigns distinct embeddings for each word and
each topic and builds the embedding of each word-topic pair by concatenating the
corresponding word and topic embeddings. Various extensions of the TWE model
have been proposed. The Neural Tensor Skip-gram (NTSG) model [Liu et al., 2015a]
applies the same idea of topic modeling for sense representation but introduces a
tensor to better learn the interactions between words and topics. Another extension
is MSWE [Nguyen et al., 2017], which argues that multiple senses might be triggered
for a word in a given context and replaces the selection of the most suitable sense in
TWE by a mixture of weights that reflect different association degrees of the word
to multiple senses in the context.

These joint unsupervised models, however, suffer from two limitations. First,
for ease of implementation, most unsupervised sense representation techniques as-
sume a fixed number of senses per word. This assumption is far from being realis-
tic. Words tend to have a highly variant number of senses, from one (monosemous)
to dozens. In a given sense inventory, usually, most words are monosemous. For
instance, around 80% of words in WordNet 3.0 are monosemous, with less than
5% having more than 3 senses. However, ambiguous words tend to occur more fre-
quently in a real text which slightly smooths the highly skewed distribution of words
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# Senses 2 3 4 5 6 7 8 9 10 11 12 ≥ 12

Nouns 22% 17% 14% 13% 9% 7% 4% 4% 3% 3% 1% 3%
Verbs 15% 16% 14% 13% 9% 7% 5% 4% 4% 3% 1% 9%
Adjectives 23% 19% 15% 12% 8% 5% 2% 3% 3% 1% 2% 6%

Table 5.1: Distribution of words per number of senses in the SemCor dataset (words
with frequency < 10 were pruned).

across polysemy. Table 5.1 shows the distribution of word types by their number of
senses in SemCor [Miller et al., 1993], one of the largest available sense-annotated
datasets which comprises around 235,000 semantic annotations for thousands of
words. The skewed distribution clearly shows that word types tend to have vary-
ing number of senses in a natural text, as also discussed in other studies [Piantadosi,
2014, Bennett et al., 2016, Pasini and Navigli, 2018].

Second, a common strand of most unsupervised models is that they extend the
Skip-gram model by replacing the conditioning of a word to its context (as in the
original model) with an additional conditioning on the intended senses. However,
the context words in these models are not disambiguated. Hence, a sense embedding
is conditioned on the word embeddings of its context.

In the following we review some of the approaches that are directly targeted at
addressing these two limitations of the joint unsupervised models described above:

1. Dynamic polysemy. A direct solution to the varying polysemy problem of
sense representation models would be to set the number of senses of a word
as defined by an external sense inventory. The Skip-gram extension of Nieto
Piña and Johansson [2015] follows this procedure. However, by taking external
lexicons as groundtruth the approach suffers from two main limitations. First,
the model is unable to handle words that are not defined in the lexicon. Sec-
ond, the model assumes that the sense distinctions defined by the underlying
text match those specified by the lexicon, which might not be necessarily true.
In other words, not all senses of a word might have occurred in the text or the
lexicon might not cover all the different intended senses of the word in the un-
derlying text. A better solution would involve dynamic induction of senses from
the underlying text. Such amodel was first implemented in the non-parameteric
MSSG (NP-MSSG) system of Neelakantan et al. [2014]. The model applies the
online non-parametric clustering procedure of Meyerson [2001] to the task by
creating a new sense for a word type only if its similarity (as computed using
the current context) to existing senses for the word is less than a parameter λ.
AdaGram [Bartunov et al., 2016] improves this dynamic behaviour by a more
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principled nonparametric Bayesian approach. The model, which similarly to
previous works builds on Skip-gram, assumes that the polysemy of a word is
proportional to its frequency (more frequent words are probably more polyse-
mous).

2. Pure sense-basedmodels. Ideally, a model should model the dependency be-
tween sense choices in order to address the ambiguity from context words. Qiu
et al. [2016] addressed this problem by proposing a pure sense-based model.
The model also expands the disambiguation context from a small window (as
done in the previousworks) to thewhole sentence.MUSE [Lee andChen, 2017]
is another Skip-gram extension that proposes pure sense representations using
reinforcement learning. Thanks to a linear-time sense sequence decodingmod-
ule, the approach provides a more efficient way of searching for sense combi-
nations.

5.1.2 SENSE REPRESENTATIONS EXPLOITINGMULTILINGUAL
CORPORA

Sense distinctions defined by a sense inventory such as WordNet might not be op-
timal for some downstream applications, such as Machine Translation (MT). Given
that ambiguity does not necessarily transfer across languages, sense distinctions for
MT should ideally be defined based on the translational differences across a specific
language pair. The usual approach to do this is to cluster possible translations of a
source word in the target language, with each cluster denoting a specific sense of the
source word.

Such translation-specific sense inventories have been used extensively in MT
literature [Ide et al., 2002, Carpuat and Wu, 2007, Bansal et al., 2012, Liu et al.,
2018]. The same inventory can be used for the creation of sense embeddings that
are suitable for MT. Guo et al. [2014] induced a sense inventory in the same man-
ner by clustering words’ translations in parallel corpora. Words in the source lan-
guage were tagged with their corresponding senses and the automatically annotated
data was used to compute sense embeddings using standard word embedding tech-
niques. Ettinger et al. [2016] followed the same sense induction procedure but used
the retrofitting-based sense representation of Jauhar et al. [2015]3, by replacing the
standard sense inventory used in the original model (WordNet) with a translation-
specific inventory.

Similarly, Šuster et al. [2016] exploited translation distinctions as supervisory
signal in an autoencoder for inducing sense representations. At the encoding stage,
the discrete-state autoencoder assigns a sense to the targetword and during decoding

3See Section 5.2 for more details on this model.
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recovers the context given the word and its sense. At training time, the encoder uses
words as well as their translations (from aligned corpora). This bilingual model was
extended by Upadhyay et al. [2017] to a multilingual setting, in order to better benefit
from multilingual distributional information.

5.2 KNOWLEDGE-BASED SENSE EMBEDDINGS
This section provides an overview of the state of the art in knowledge-based
sense representations. These representations are usually obtained as a result of de-
conflating a word into its individual sense representations, as defined by an external
sense inventory. Figure 5.3 depicts the main workflow for knowledge-based sense
vector representation modeling techniques.

Word Sense Disambiguation. Word Sense Disambiguation (WSD) is a task
which is closely related to the meaning conflation deficiency. WSD has been a
long-standing task in NLP and AI [Navigli, 2009], dating back to the first half of
the 20th century where it was viewed as a key intermediate task for machine
translation [Weaver, 1955]. Given a word in context, the task of WSD consists of
associating the word with its most appropriate meaning as defined by a sense in-
ventory. For example, in the sentence “Mymousewas broken, so I bought a new
one yesterday.”, mouse would be associated with its computer device meaning,
assuming an existing entry for such sense in the pre-defined sense inventory.

WSD has been catalogued as an AI-complete problem [Mallery, 1988, Nav-
igli, 2009] and its challenges (still present nowadays) are manifold: sense gran-
ularity, corpus domain or the representation of word senses (topic addressed
in this survey), to name a few. In addition, the fact that WSD relies on knowl-
edge resources poses additional challenges such as the creation of such resources
and the construction of sense-annotated corpora. All of these represent a very
expensive and time-consuming effort, which needs to be re-done for differ-
ent resources and languages, and updated over time. This causes the so-called
knowledge-acquisition bottleneck [Gale et al., 1992].

The knowledge resources and sense inventories traditionally used in WSD
have been associatedwith entries on a standard dictionary, withWordNet [Miller
et al., 1993] being the de-facto sense inventory for WSD. Nevertheless, other
machine-readable structures can be (and are) considered in practice. For exam-
ple, Wikipedia, which is constantly being updated, can be viewed as a sense in-
ventory where each entry corresponds to a different concept or entity [Mihal-
cea and Csomai, 2007]. Senses can even be induced automatically from a corpus
using unsupervised methods, a task known as word sense induction or discrimi-
nation.
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Figure 5.3: Knowledge-based sense representation techniques take sense distinc-
tions for a word as defined by an external lexical resource (sense inventory). For
each sense, relevant information is gathered and a representation is computed.

Methods to perform WSD can be roughly divided into two classes: su-
pervised [Zhong and Ng, 2010, Iacobacci et al., 2016, Yuan et al., 2016, Ra-
ganato et al., 2017b, Luo et al., 2018] and knowledge-based [Lesk, 1986, Baner-
jee and Pedersen, 2002, Agirre et al., 2014,Moro et al., 2014, Tripodi and Pelillo,
2017, Chaplot and Salakhutdinov, 2018].While supervisedmethodsmake use of
sense-annotated corpora, knowledge-based methods exploit the structure and
content of the underlying knowledge resource (e.g. definitions or a semantic
network).a Currently, supervised methods clearly outperform knowledge-based
systems [Raganato et al., 2017a]; but, as mentioned earlier, they heavily rely on
the availability of sense-annotated corpora, which is generally scarce.

In this bookwewill not go into further details ofWSD. For a comprehensive
historical overview of WSD we would recommend the survey of Navigli [2009],
and a more recent analysis of current methods can be found in the empirical
comparison of Raganato et al. [2017a].
aSomemethods can also be categorized as hybrid, as they make use of both sense-annotated corpora and
knowledge resources, e.g., the gloss-augmented model of Luo et al. [2018].

The learning signal for these techniques vary, but in the main two different
types of information available in lexical resources are leveraged: textual definitions
(or glosses) and semantic networks.

Textual definitions are used as main signals for initializing sense embed-
dings by several approaches. Chen et al. [2014] proposed an initialization of word
sense embeddings by averaging pre-trained word embeddings trained on text cor-
pora. Then, these initialized sense representations are utilized to disambiguate a large
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corpus. Finally, the training objective of Skip-gram from Word2vec [Mikolov et al.,
2013a] is modified in order to learn both word and sense embeddings from the dis-
ambiguated corpus. In contrast, Chen et al. [2015] exploited a convolutional neural
network architecture for initializing sense embeddings using textual definitions from
lexical resources. Then, these initialized sense embeddings are fed into a variant of
the Multi-sense Skip-gramModel of Neelakantan et al. [2014] (see Section 5.1.1) for
learning knowledge-based sense embeddings. Finally, in Yang and Mao [2016] word
sense embeddings are learned by exploiting an adapted Lesk4 algorithm [Vasilescu
et al., 2004] over short contexts of word pairs.

A different line of research has experimented with the graph structure of lexical
resources for learning knowledge-based sense representations. As explained in Sec-
tion 2.3, many of the existing lexical resources can be viewed as semantic networks
in which nodes are concepts and edges represent the relations among concepts. Se-
mantic networks constitute suitable knowledge resources for disambiguating large
amounts of text [Agirre et al., 2014, Moro et al., 2014]. Therefore, a straightforward
method to learn sense representations would be to automatically disambiguate text
corpora and apply a word representation learning method on the resulting sense-
annotated text [Iacobacci et al., 2015]. Following this direction, Mancini et al. [2017]
proposed a shallow graph-based disambiguation procedure and modified the objec-
tive functions of Word2vec in order to simultaneously learn word and sense em-
beddings in a shared vector space. The objective function is in essence similar to
the objective function proposed by Chen et al. [2014] explained before, which also
learns both word and sense embeddings in the last step of the learning process.

Similarly to the post-processing of word embeddings by using knowledge re-
sources (see Section 3.4), recent works have made use of pre-trained word em-
beddings not only for improving them but also de-conflating them into senses. Ap-
proaches that post-process pre-trainedword embeddings for learning sense em-
beddings are listed below:

1. One way to obtain sense representations from a semantic network is to di-
rectly apply the Personalized PageRank algorithm [Haveliwala, 2002], as done
by Pilehvar and Navigli [2015]. The algorithm carries out a set of random graph
walks to compute a vector representation for eachWordNet synset (node in the
network). Using a similar random walk-based procedure, Pilehvar and Collier
[2016] extracted for each WordNet word sense a set of sense biasing words.
Based on these, they put forward an approach, called DeConf, which takes a
pre-trained word ebmeddings space as input and adds a set of sense embed-
dings (as defined byWordNet) to the same space. DeConf achieves this by push-

4The original Lesk algorithm [Lesk, 1986] and its variants exploit the similarity between textual definitions and
a target word’s context for disambiguation.
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Figure 5.4: A mixed semantic space of words and word senses. DeConf [Pilehvar
and Collier, 2016] introduces two new points in the word embedding space, for the
mathematical and body part senses of the word digit, resulting in the mixed space.

ing a word’s embedding in the space to the region occupied by its corresponding
sense biasing words (for a specific sense of the word). Figure 5.4 shows the word
digit and its induced hand and number senses in the vector space.

2. Jauhar et al. [2015] proposed an extension of retrofitting5 [Faruqui et al., 2015]
for learning representations for the senses of the underlying sense inventory
(e.g., WordNet). They additionally presented a second approach which adapts
the training objective of Word2vec to include senses within the learning pro-
cess. The training objective is optimized using EM.

3. Johansson and Pina [2015] post-processed pre-trained word embeddings
through an optimization formulation with two main constraints: polysemous
word embeddings can be decomposed as combinations of their corresponding
sense embeddings and sense embeddings should be close to their neighbours
in the semantic network. A Swedish semantic network, SALDO [Borin et al.,
2013], was used in their experiments, although their approach may be directly
extensible to different semantic networks as well.

5See Section 3.4 for more information on retrofitting.
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4. Finally, AutoExtend [Rothe and Schütze, 2015] is another method using pre-
trainedword embeddings as input. In this case, they put forward an autoencoder
architecture based on two main constraints: a word vector corresponds to the
sum of its sense vectors and a synset to the sum of its lexicalizations (senses).
For example, the vector of the word crane would correspond to the sum of the
vectors for its senses crane1n, crane

2
n and crane1v (using WordNet as reference).

Similarly, the vector of the synset defined as “arrange for and reserve (something
for someone else) in advance” in WordNet would be equal to the sum of the
vectors of its corresponding senses reserve, hold and book. Equation 5.1 displays
these constraints mathematically:

w⃗ =
n∑

i=1

s⃗i ; y⃗ =
m∑
j=1

s⃗j, (5.1)

where si and sj refer to the senses of word w and synset y, respectively.

Concept and Entity Representations. In addition to these methods repre-
senting senses as represented in a sense inventory, other models combine cues
from text corpora and knowledge resources to learn representations for con-
cepts and entities (e.g. WordNet synsets or Wikipedia entities).a Given its semi-
structured nature and the textual content provided,Wikipedia has been themain
source for these kind of representations. While most approaches make use of
Wikipedia-annotated corpora as their main source to learn representations for
Wikipedia concepts and entities [Wang et al., 2014a, Sherkat and Milios, 2017,
Cao et al., 2017], the combination of knowledge from heterogeneous resources
like Wikipedia and WordNet has also been explored [Camacho-Collados et al.,
2016].b

Given their hybrid nature, these models can easily be used in textual ap-
plications as well. A straightforward application is word or named entity disam-
biguation, for which the embeddings can be used as initialization in the embed-
ding layer on a neural network architecture [Fang et al., 2016, Eshel et al., 2017]
or used directly as a knowledge-based disambiguation system exploiting seman-
tic similarity [Camacho-Collados et al., 2016].
aFor those methods that rely solely on the relational information of knowledge bases, please refer to
Section 4.1.

bThe combination of Wikipedia and WordNet relies on the multilingual mapping provided by BabelNet
(see Section 2.3.3 for more information about BabelNet).
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5.3 EVALUATION AND APPLICATION
The main reason behind the existence of sense representations is that they are a so-
lution to themeaning conflation deficiency of word representations. Given that sense
representations are often considered as a specialised form of word embeddings, the
sense representation models have often been evaluated on intrinsic benchmarks de-
signed for words (see Chapter 5 for an overview). This has also been driven by the
fact that there are not many reliable intrinsic benchmarks for evaluating sense rep-
resentations.

In order to adapt intrinsic word similarity benchmarks to evaluating sense em-
beddings, various strategies have been proposed [Reisinger and Mooney, 2010].
Among these, the most popular is to take the most similar pair of senses across
the two words [Resnik, 1995, Pilehvar and Navigli, 2015, Mancini et al., 2017], also
known asMaxSim:

sim(w1, w2) = max
s1∈Sw1 ,s2∈Sw2

cos(s⃗1, s⃗2) (5.2)

where Swi
is a set including all senses of wi and s⃗i represents the sense vector rep-

resentation of the sense si. Another strategy, known as AvgSim, simply averages the
pairwise similarities of all possible senses of w1 and w2. Cosine similarity (cos) is the
most prominent metric for computing the similarity between sense vectors.

In all these benchmarks, words are paired in isolation. However, we know that
for a specific meaning of an ambiguous word to be triggered, the word needs to ap-
pear in particular contexts. In fact, Kilgarriff [1997] argued that representing a word
with a fixed set of senses may not be the best way for modelling word senses but
instead, word senses should be defined according to a given context. To this end,
Huang et al. [2012] presented a different kind of similarity dataset in which words
are provided with their corresponding contexts. The task consists of assessing the
similarity of two words by taking into consideration the contexts in which they oc-
cur. The dataset is known as Stanford Contextual Word Similarity (SCWS) and has
been established as one of the main intrinsic evaluations for sense representations.

A pre-disambiguation step is required to leverage sense representations in the
contextual word similarity task. Simple similarity measures such as MaxSimC or
AvgSimC can be used; however, they cannot incorporate the context of words.
The more suitable choice of strategy for this setting is either MaxSim and AvgSim,
MaxSimC and AvgSimC which allow entering context into the similarity computa-
tion. First, the confidence for selecting the most appropriate sense within the sen-
tence is computed (for instance by computing the average of word embeddings from
the context and selecting the sense which is closest to the average context vector
in terms of cosine similarity). Then, the final score corresponds to the similarity be-
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tween the selected senses (i.e.,MaxSimC ) or to a weighted average among all senses
(i.e., AvgSimC ).

However, even though sense representations have generally outperformed
word-based models on intrinsic evaluations, the simple strategies used to disam-
biguate the input text may not have been optimal. In fact, it has been recently shown
that the improvements of sense-based models in word similarity tasks using AvgSim
may not be due to accurate meaning modeling but to related artifacts such as sub-
sampling, which had not been controlled for [Dubossarsky et al., 2018].

TheWord-in-Context (WiC) dataset [Pilehvar and Camacho-Collados, 2018] is
one of the very few existing intrinsic benchmarks specifically designed for evaluating
sense representations. WiC is framed as a binary classification task which alleviates
the dependency on specific sense inventories. Each instance in WiC has a target
wordw, either a verb or a noun, for which two contexts are provided. Each of these
contexts triggers a specific meaning of w. The task is to identify if the occurrences
ofw in the two contexts correspond to the same meaning or not. In fact, the dataset
can also be viewed as an application of Word Sense Disambiguation that alleviates
dependency on specific sense inventories.

Extrinsic evaluation of sense representations is very similar to that for word
representations (cf. Section 3.6.2). The main distinguishing difference is that in the
former, the input needs to be disambiguated to allow the integration of sense rep-
resentations. This introduces another source of uncontrolled noise especially given
the non-optimality of disambiguation techniques. Some of the most common tasks
that have been used as extrinsic evaluation are text categorization and sentiment
analysis [Liu et al., 2015b, Li and Jurafsky, 2015, Pilehvar et al., 2017], document
similarity [Wu and Giles, 2015], and word sense induction [Pelevina et al., 2016,
Panchenko et al., 2017] and disambiguation [Chen et al., 2014, Rothe and Schütze,
2015, Camacho-Collados et al., 2016, Peters et al., 2018].
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C H A P T E R 6

Contextualized
Embeddings

This chapter provides an introduction to contextualizedword (CW) embeddings. CW
can be considered as the new generation of word (and sense) embeddings. The dis-
tinguishing factor here is the sensitiveness of a word’s representation to the context:
a target word’s embedding can change depending on the context in which it appears.
These dynamic embeddings alleviate many of the issues associated with static word
embeddings and provide reliable means for capturing semantic and syntactic prop-
erties of natural language in context. Despite their young age, contextualized word
embeddings have provided significant gains in almost any downstream NLP task to
which they have been applied.

6.1 THE NEED FOR CONTEXTUALIZATION

Since their introduction, pre-trained word embeddings have dominated the field of
semantic representation. They have been a key component in most neural natural
language processing systems. Usually, an NLP system is provided with large pre-
trained word embeddings for all the words in the vocabulary of the target language.1

At the input layer, the system looks up the embedding for a given word and feeds the
corresponding embedding to the subsequent layers (as opposed to a one-hot repre-
sentation). Figure 6.1(a) depicts the general architecture for such a system. Moving
from hard-coded one-hot representations to a continuous word embedding space
usually results in improved generalisation power of the system, hence improved per-
formance.

However, pre-trained word embeddings, such as Word2vec and GloVe, com-
pute a single static representation for each word. The representation is fixed; it is
independent from the context in which the word appears. In our example in Figure
6.1(a), the same embedding would be used at the input layer for cell even if the word
was used in different contexts that would have triggered its other meanings, e.g., “the
cells of a honeycomb”, “mobile cell”, and “prison cell”.

1For instance, the widely-used Google News Word2vec embeddings has a vocabulary of three million words:
https://code.google.com/archive/p/word2vec/
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Figure 6.1: Context-independent (static) embeddings are fixed points in the seman-
tic space: they do not change, irrespective of the context in which the target word
appears. In the word-based model (a) For each input word, the static embedding is
looked up from a pre-trained semantic space. Embeddings are introduced as fea-
tures, usually in the input layer. In the sense based model (b), words are first disam-
biguated before being input to the system, and the corresponding sense embeddings
are passed to the model.

Static semantic representations suffer from two important limitations: (1) ig-
noring the role of context in triggering specific meanings of words is certainly an
oversimplification of the problem; this is not the way humans interprete meanings of
words in texts; (2) due to restricting the semantic barriers to individual words, it is
difficult for the model to capture higher order semantic phenomena, such as compo-
sitionality and long-term dependencies. Therefore, the static word-based represen-
tation of words can substantially hamper the ability of NLP systems in understanding
the semantics of the input text. In this setting, all the load of deriving meaning from
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a sequence of words is on the shoulders of the main system, which has to deal with
ambiguity, syntactic nuances, agreement, negation, etc.

Knowledge-based sense representations (discussed in Chapter 5) can partly ad-
dress the first issue. The distinct representations they provide for specific meanings
of polysemous words enable the model to have a clear interpretation of the intended
meaning of a word, pure from its other irrelevant meanings. Swapping word embed-
dings with sense embeddings requires the system to carry out an additional step: a
word sense disambiguation module has to identify the intended meaning of ambigu-
ous words (e.g., “cell”). Having identified the intended sense, the system can swap
the word embedding with the corresponding sense embedding. This swapping cou-
pled with the disambiguation stage can be regarded as a way of contextualizing each
word’s representation to the semantics of its surrounding words.

However, there are multiple factors that limit the efficacy of sense embeddings.
Firstly, word sense disambiguation is far from being optimal; hence, the initial stage
ofmappingwords toword senses introduces inevitable noise to the pipeline [Pilehvar
et al., 2017]. Secondly, it is not straightforward to benefit from raw texts, which are
available at scale, to directly improve these representations. Hence, their coverage
and semantic depth is limited to the knowledge encoded in lexical resources, which
can be too restrictive. Thirdly, these representations are still not fully contextualized.
The intended sense of a word in a given context is assumed to fully align with that
defined in the target inventory, which might not be always true. For instance, the
closest meaning for the noun “tweet” in WordNet is “a weak chirping sound as of a
small bird” which certainly will not fully align if the intended meaning refers to “a
post on Twitter”. Even worse, the intended meaning of the word, or the word itself,
might not have been covered in the underlying sense inventory (for instance, the
noun “embedding”, as it is widely used in NLP, is not defined in WordNet).

Unsupervised sense representations can be adapted to specific text domains;
hence, they might not suffer as much in terms of coverage. However, they still need
a disambiguation stage which is not be as straightforward as that for knowledge-
based counterparts. Given that these representations are often produced as a result of
clustering, their semantic distinctions are unclear and their mapping to well-defined
concepts is not simple. Hence, a more complicated word sense disambiguation stage
would be required, one that can disambiguate the input words according to the in-
ventory of induced senses. Given that such a technique cannot easily benefit from
rich sense-specific information available in existing lexical resources, it is usually not
that effective. In fact, one of the main limitations of unsupervised sense representa-
tionmodels lies in their difficult integration into downstreammodels [Li and Jurafsky,
2015].



D
R
A
FT

6.2. BACKGROUND: TRANSFORMERMODEL 77

Figure 6.2: A high-level illustration of the Transformer model used for translation.
The model is auto-regressive and has an encoder-decoder structure. The encoder
and decoder have six identical encoders and decoders, respectively (only four shown
here).

6.2 BACKGROUND: TRANSFORMERMODEL
Given that most of the recent literature on contextualized embeddings are based on
a novel model called Transformer, in this section, we provide a brief overview of the
Transformer architecture. Figure 6.2 provides a high-level illustration of the Trans-
former model. The model is an auto-regressive sequence transducer: the goal is to
convert an input sequence to an output sequence, while the predictions are done
one part at a time, consuming the previously generated parts as additional input.
Similarly to most other sequence to sequence (Seq2Seq) models (cf. Section 2.2.2),
the Transformer employs an encoder-decoder structure. However, unlike previous
models which conventionally used a recurrent network (e.g., LSTM) for their en-
coder and decoder, the Transformer model is based on self-attention only with no
recurrence. TheTransformer forgoes the recurrence of RNN’s for a fully feedforward
attention-based architecture.

The main idea behind the Transformer model is self-attention. Self-attention,
also known as intra-attention, is a mechanism that enables the sequence encoder to
“attend” to specific parts of the sequence while processing a specific word.
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Figure 6.3: An illustration of self attention for the words cell (top) and mosaic (bot-
tom). By attending to the context, particularly membrane, the interpretation of cell
gets adapted to this specific usage and for the biological meaning. The same applies
for mosaic, with a self attention mostly towards structure, membrane, and fluid. In
the Transformer model, there are multiple spaces for self-attention (multi-head at-
tention) that allows the model to have different interpretations in multiple represen-
tation sub-spaces.

6.2.1 SELF-ATTENTION
We saw in Section 2.2.2 the intuition behind the attention mechanism in sequence
tranduction models. The basic idea was to focus the attention of the model to those
source tokens forwhich the decoder is currently trying to generate the corresponding
output (for instance, translation). The same idea can be applied to the process of
reading and understanding of natural language text.

Figure 6.3 shows an example for self-attention for two semantically ambiguous
words, mosaic and cell. Consider the word cell. Even for a human reading this sen-
tence, it would be almost impossible to identify the intended meaning of the word
unless the succeeding word (i.e.,membrane) is taken into account. In fact, to be able
to get a clear grasp of the meaning of a sentence, humans often require to scan the
context or finish reading the sentence.

Self-attention, also known as intra-attention, is a special attention mechanism
that tries to mimic this process. Instead of relating positions across two different se-
quences, self-attention looks for relations between positions in the same sequence.
The goal of self-attention is to allow the model to consider the context while “read-
ing” a word. For the case of our example, while “reading” the target word cell the
self-attention mechanism focuses the attention to the word membrane in order to
allow a better representation for the target word, adapted to the biological mean-
ing. Note that, similarly to the Seq2Seq attention mechanism, self-attention is a soft
measure: multiple words can be attended with varying degrees.

Consider the input sequence x1, ..., xn. The self-attention mechanism maps the
input embeddings for this sequence to an adapted output sequence z1, ..., zn. For an
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input word2 xt, the process of computing the self-attention vector zt in the Trans-
former model can be summarized as follows:

1. For every input xi, compute three different vectors: query qi, key ki, and value vi.
This is done by multiplying the input vector xi with the corresponding matrices
W q,W k, andW v. The weights of these matrices are among the parameters that
are learned during training.

2. Compute a score si for every input xi. The score is computed as the dot product
of the query vector qt and the corresponding key vectors for every xi (i.e., all
ki).

3. Normalize the scores by
√
dk, where dk is the dimensionality of the key (and

query) vector.

4. Compute a weighted average of all value vectors (vi), weighted by their corre-
sponding scores si. The resulting vector is zt.

The above procedure can be written as the following equation in matrix form:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6.1)

The Transformer model makes use of multiple attention heads. In other words,
multiple sets ofW matrices are considered to produce different query, key, and value
vectors for the same word. This allows the model to have multiple representation
sub-spaces to focus on different positions.

6.2.2 ENCODER
The original Transformer model makes use of six identical encoder layers. Figure
6.4 (left) shows the the stack of three of these encoders (for one, we are showing
more details of the internal structure). Each encoder layer has two sub-layers: self-
attention and feedforward. We saw in the previous section how the self-attention
layer can help the model to look at the context words while “reading”, in order to
get a clearer understanding of the semantics of individual tokens, and in turn the
meaning of the sentence. As was explained before, each attention layer is coupled
withmultiple “heads”, with the hope of enabling themodel to attend to different parts
and two have multiple independent representation subspaces for capturing distinct
patterns.

2In the actual model each word might be split into multiple tokens; for instance, membrane can be split into
mem, bra, and ne_. The input to the model would be a sequence of tokens (rather than words).
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Figure 6.4: Encoders and decoders have similar internal structure, other than an
encoder-decoder attention sub-layer added to the decoder. Input word embeddings
are summed up with positional encodings and are fed to the bottom encoder. De-
coders receive the outputs generated so far (as well as signal from the encoder) and
predict the next token. Prediction is done via a fully-connected layer that generates
the scores over the vocabulary (logits vector), followed by a softmax (to make the
scores probability-like).

The zi outputs of the self-attention sub-layer are fed to the feedforward sub-
layerwhich is in fact a fully-connected network. The feedforward layer is point-wise,
i.e., the same feedforward network is applied independently to individual zi vectors.

6.2.3 DECODER
Similarly to the encoder, the decoder of the Transformer model also consists of a
stack of six identical decoder layers. Each decoder is very similar to encoder in ar-
chitecture with the slight difference that it has a third sub-layer which performs a
cross-attention between encoder’s output and decoder’s state.3 Also, it is necessary

3Both decoder and encoder involve other small architectural details, such as residual connections around sub-
layers and normalization. We skip these for simplicity.
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Figure 6.5: The positional encodings used to capture relative positions in the Trans-
former model. Sixteen encodings are visualised (rows), enough to encode a sequence
of 16 tokens (10,000 in the original model). The model also use of 512-d encodings;
but, for simplicity we show 50-d. Two sub-encodings are generated using sin() (top,
left) and cos() (top, right) functions. The two aremerged to generate the full encoding,
shown at the bottom.

to modify the self-attention sub-layer in the decoder in order to prevent the model
from attending to subsequent positions. Transformer achieves this bymeans ofmask-
ing the subsequent positions. This masking is to ensure that the predictions at any
position can depend only on the outputs generated so far (and not future outputs).

6.2.4 POSITIONAL ENCODING
As explained above, the Transformermodel does not involve any recurrence (or con-
volution) to capture the relative positioning of tokens in the sequence. However,
we know that word order is crucial to semantics; ignoring this would diminish the
model to a simple bag-of-words. The authors of the Transformer model made use of
a mechanism called positional encoding in order to inject information about token
positions and hence making the model sensitive to word order.
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To this end, each input embedding to the encoder and decoder is added with a
positional embedding which denotes the position of each input word with respect to
the sequence. To facilitate the summation, positional encodings are of the same size
as the input token embeddings. There can be different ways of encoding the position;
Transformer makes use of a sinosuidal function. Specifically, the positional encoding
P for the tth token (starting from 0) is computed as follows:

Di =
1

10000
2i
d

P (t, 2i) = sin(tDi)

P (t, 2i+ 1) = cos(tDi)

(6.2)

where i ∈ {0, .., d− 1} is the encoding index, and d is the dimensionality of the posi-
tional encodings which is the same as input token embedding size (512 in the original
model). An example is shown in Figure 6.5. Note that the final encoding is a merger
of the two sub-encodings from sin() and cos() functions, where the former fills the
even positions and the latter the odd ones.

6.3 CONTEXTUALIZEDWORD EMBEDDINGS

Unlike static word embeddings, contextualized embeddings are representations of
words in context. They can circumvent many of the limitations associated with word
and sense embeddings, bringing about multiple advantages, one of the most impor-
tant of which is seamless integration into most neural language processing models.
Unlike knowledge-based sense representations, these embeddings do not rely on an-
notated data or external lexical resources and can be learned in an unsupervised
manner. More importantly, their introduction to neural models does not require ex-
tra efforts such as word sense disambiguation as they function at the level of words.
Interestingly, contextualized embeddings not only can capture various semantic roles
of a word, but also its syntactic properties [Hewitt and Manning, 2019, Goldberg,
2019].

In contrast to staticword embeddingswhich are fixed, contextualizedword em-
beddings are dynamic in that the same word can be assigned different embeddings if
it appears in different contexts. Therefore, unlike static word embeddings, contex-
tualized embeddings are assigned to tokens as opposed to types. Instead of receiving
words as distinct units and providing independent word embeddings for each, con-
textualized models receive the whole text span (the target word along with its con-
text) and provide specialized embeddings for individual words which are adjusted to
their context. Figure 6.6 provides an illustration: to produce a dynamic embedding
for the target word (i.e., cell) the contextualized model analyzes the whole context.
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Figure 6.6: Unlike static (context-independent) word embeddings, contextualized
(dynamic) embeddings are not fixed: they adapt to their representation to the con-
text. The contextualized representation model processes the context of the target
word (cell in the figure) and generates its dynamic embedding.

The following sections will provide more information on the specifics of the model
in the figure.

6.3.1 EARLIERMETHODS
The sequence tagger of Li and McCallum [2005] is one of the pioneering works that
employ contextualized representations. The model infers context sensitive latent
variables for each word based on a soft word clustering and integrates them, as ad-
ditional features, to a CRF sequence tagger. The clustering technique enabled them
to associate the same word with different features in different contexts.

With the introduction of word embeddings [Collobert et al., 2011, Mikolov
et al., 2013c] and the efficacy of neural networks, and in the light of meaning con-
flation deficiency of word embeddings, context-sensitive models have once again
garnered research attention. Context2vec [Melamud et al., 2016] is one of the first
proposals in the new branch of contextualized representations. Context2vec’s ini-
tial goal was to compute a better representations for the context of a given target
word. The widely-practised and usually competitive baseline to compute represen-
tation for multiple words (a piece of text) is to simply average the embedding of the
words. This baseline is unable to capture important properties of natural language,
such as word order or semantic prominence. Instead, Context2vec makes use of a
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Figure 6.7: Architecture of Context2vec and how it differs from Word2vec CBOW:
instead of modeling the context by naively averaging embeddings of words in the
context window (as in CBOW), context2vec models the context using a bidirectional
LSTM.

bidirectional LSTM language model to better encode these properties. Figure 6.7
shows the architecture of Context2vec and illustrates the different context model-
ing of this technique in comparison with Word2vec CBOW. Context2vec embeds
sentential contexts and target words in the same semantic space.

The encoded representation for the context of a target word can be taken as
the embedding of that wordwhich is contextualized to its context. Hence, though the
authors of Context2vec did not explicitly view the approach as ameans of computing
dynamic word embeddings, it is highly similar to subsequent works in contextualized
word embeddings and constitutes one of the bases for this field of research. Themost
important distinguishing factor to subsequent techniques is that Context2vec ignores
the target word while computing the contextualized representation, which turns out
to be crucial.

6.3.2 LANGUAGEMODELS FORWORD REPRESENTATION
Aswas discussed inChapter 2, LanguageModels (LM) aim at predicting the nextword
in a sentence given the preceding words. To be able to accurately predict a word in
a sequence, LMs need to encode both the semantic and syntactic roles of words
in context. This makes them suitable candidates for word representation. In fact,
nowadays, LMs are key components not only in natural language generation, but also
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in natural language understanding. Additionally, knowledge acquisition bottleneck is
not an issue for LMs, since they can essentially be trained onmultitude of raw texts in
an unsupervisedmanner. In fact, extensivemodels can be trainedwith LMobjectives
and then transferred to specific tasks. Though still at early stages, this technique has
been shown to be a promising direction [Radford et al., 2018], reminiscent of the
pre-training procedure in Computer Vision which involves training an initial model
on ImageNet or other large image datasets and then transferring the knowledge to
new tasks.

Figure 6.6 provides a high-level illustration of the integration of contextualized
word embeddings into an NLPmodel. At the training time, for each word (e.g., cell in
the figure) in a given input text, the language model unit is responsible for analyzing
the context (usually using sequence-based neural networks) and adjusting the target
word’s representation by contextualising (adapting) it to the context. These context-
sensitive embeddings are in fact the internal states of a deep neural network which is
trained with language modeling objectives either in an unsupervisedmanner [Peters
et al., 2017, Peters et al., 2018] or on a supervised task, such as bilingual translation
configuration [McCann et al., 2017]. The training of contextualized embeddings is
carried out as a pre-training stage, independently from the main task on a large unla-
beled or differently-labeled text corpus. Depending on the sequence encoder used in
language modeling, these models can be put into two broad categories:RNN (mostly
LSTM) and Transformer.

6.3.3 RNN-BASEDMODELS
For this branch of techniques, the “Contextualized representation model” in Figure
6.6 is on the shoulders of an LSTM-based encoder, usually a multi-layer bidirec-
tional LSTM (BiLSTM). LSTMs are known to be able to capture word order to some
good extend. Also, unlike the word embedding averaging baseline, LSTMs are capa-
ble of combining word representations in a more reasonable manner, giving higher
weights to those words that are semantically more central in the context. The TagLM
model of Peters et al. [2017] is a an example of this branch which trains a BiLSTM
sequence encoder on monolingual texts. The outputs of the sequence encoder are
concatenated and fed to a neural CRF sequence tagger as additional features.

The Context Vectors (CoVe) model of McCann et al. [2017] similarly computes
contextualized representations using a two-layer biLSTM network, but in the ma-
chine translation setting. CoVe vectors are pre-trained using an LSTM encoder from
an attentional sequence-to-sequence machine translation model.4

4In general, the pre-training property of contextualized embeddings makes them closely related to transfer
learning [Pratt, 1993], which is out of the scope of this book. For more detailed information on transfer learn-
ing for NLP, we would refer to [Ruder, 2019].
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Figure 6.8: ELMo makes use of a 2-layer bidirectional LSTM to encode words in the
context word. The ELMo representation for the target word is a combination of the
hidden states of the two BiLSTM layers, i.e., hk1

and hk2
, which encode the context-

sensitive representation of each word, and the static representation of the word, i.e.,
xk, which is character-based. ELMo uses some residual connections across LSTMs
which are not shown in the figure for simplicity.
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The prominent ELMo (Embeddings from Language Models) technique [Peters
et al., 2018] is similar in principle. A multi-layer (two in the original model) BiLSTM
sequence encoder is responsible for capturing the semantics of the context. Themain
difference between TagLM and ELMo lies in the fact that in the latter some weights
are shared between the two directions of the language modeling unit. Figure 6.8 pro-
vides a high-level illustration of how ELMo embeddings are constructed. A residual
connection between the LSTM layers allows the deeper layer(s) to have a better look
at the original input and to allow the gradients to better backpropagate to the initial
layers. The model is trained on large amounts of texts with the language modeling
objective: given a sequence of tokens, predict the next token. The trained model is
then used to derive contextualized embeddings that can be used as input into various
NLP systems.

There can be multiple ways for combining the outputs of ELMomodel, i.e., the
hidden states of the two BiLSTM layers, hk1

and hk2
, and the context-independent

representation xk. One may take only the top layer output or concatenate the three
layers to have long vectors for each token, to be fed as inputs to an NLP system. One
can also learn a weighted combination of the three layers, based on the target task,
or concatenate other static word embeddings with ELMo embeddings. ELMomakes
use of character-based technique (based on Convolution Neural Networks) for com-
puting xk embeddings. Therefore, it benefits from all the characteristics of character-
based representations (cf. Section 3.3), such as robustness to unseen words.

6.4 TRANSFORMER-BASEDMODELS: BERT
The introduction of Transformers [Vaswani et al., 2017] and their immense poten-
tial in encoding text sequences resulted in another boost in the already fast-moving
field of LM-based contextualized representations. Transformers come with multiple
advantages over recurrent neural networks (whichwere previously the dominant role
players): (1) compared to RNNs which process the input sequentially, Transformers
are parallel which makes them suitable for GPUs and TPUs which excel at massive
parallel computation; (2) Unlike RNNs which have memory limitation and tend to
process the input in one direction, thanks to the self-attention mechanism (cf. Sec-
tion 6.2.1), Transformers can attend to contexts about a word from distant parts of
a sentence, both earlier and later than the word appears, in order to enable a better
understanding of the target word without any locality bias. For instance, the word
“cell” in Figure 6.8 can be disambiguated by looking at the next word in the context,
“membrane”.

The impressive initial results obtained by Transformers on sequence to se-
quence tasks, such as Machine Translation and syntactic parsing [Kitaev and Klein,
2018], suggested a potential replacement for LSTMs in sequence encoding tasks. As
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of now, Transformers are dominantly exceeding the performance levels of conven-
tional recurrent models on most NLP tasks that involve sequence encoding.

The OpenAI’s GPT model (Generative Pre-trained Transformer) [Radford,
2018] was one of the first attempts at representation learning using Transformers.
Moving from LSTMs to Transformers resulted in a significant performance improve-
ment and enabled a more effective way of fine-tuning the pre-trained models to spe-
cific tasks.

The architecture of the Transformer model was discussed in Section 6.2. The
GPT model is based on a modified version of Transformer, called the Transformer
Decoder [Li et al., 2018], which discards the encoder part. Therefore, instead of
having a source and a target sentence for the sequence transduction model, a single
sentence is given to the decoder. Instead of generating a target sequence, the objec-
tive is set as a standard language modeling in which the goal is to predict the next
word given a sequence of words. GPT was also one of the first works to popularize
the fine-tuning procedure (to be discussed in Section 6.6).

However, like ELMo, GPT was based on unidirectional language modeling.
While reading a token, GPT can only attend to previously seen tokens in the self-
attention layers. This can be very limiting for encoding sentences, since understand-
ing a word might require processing future words in the sentence. This is despite
the fact that Transformers are characterized by their self-attention layer and the ca-
pability of receiving the input sequence in parallel. What hindered a bidirectional
Transformers was that bidirectional conditioning would result in a word to indirectly
“see” itself in a multi-layered context.

BERT. BERT, short for Bidirectional Encoder Representations from Trans-
formers [Devlin et al., 2019] revolutionized theNLP field in 2018/2019. Similarly
to GPT, BERT is based on the Transformer architecture; however, BERT makes
use of the full encoder-decoder architecture (see 6.2 for more details).

The essential improvement over GPT is that BERT provides a solution for
making Transformers bidirectional. This addition enables BERT to perform a
joint conditioning on both left and right context in all layers. This is achieved by
changing the conventional next-word prediction objective of language modeling
to a modified version, called Masked Language Modeling.

6.4.1 MASKED LANGUAGEMODELING
Before BERT, the commonly-practised language modeling objective was to predict
the next token (given a sequence of tokens). Inspired by the cloze test [Taylor, 1953],
BERT introduced an alternative language modeling objective to be used during the
training of the model. According to this objective, instead of predicting the next to-



D
R
A
FT

6.4. TRANSFORMER-BASEDMODELS: BERT 89

ken, the model is expected to guess a “masked” token; hence, the nameMasked Lan-
guageModeling (MLM).MLM randomlymasks some of the tokens from the input se-
quence (15% for example), by replacing them with a special token, e.g., “[MASK]”.

For instance, the sequence “the structure of cell membrane is known as fluid
mosaic” is changed to “the structure of cell [MASK] is known [MASK] fluid mosaic”.
The goal would be to predict the masked (missing) tokens based on the information
available from unmasked tokens in the sequence. This allows the model to have con-
ditioning not only on the right (next token prediction) or left side (previous token
prediction), but on context from both sides of the token to be predicted.

To bemore precise, given that the [MASK] token only appears during the train-
ing phase, BERT employs a more comprehensive masking strategy. Instead of always
replacing the token with the special [MASK] token (that has 80% chance), BERT
sometimes replaces the word with a random word (10% chance) or with the same
word (10%).

It is important to note that the model is not provided with the information on
missing words (or words that have been replaced). The only information is the pro-
portion of this change (e.g., 15% of the input size). It is on the model to guess these
words and suggest predictions/replacements. The objective enabled BERT to cap-
ture both left and the right contexts, and to alleviate the unidirectional limitation of
earlier models.

6.4.2 NEXT SENTENCE PREDICTION
In addition to the MLM objective, BERT also uses a Next Sentence Prediction (NSP)
task in which the model has to identify if a given sentence can be considered as
the subsequent sentence to the current sentence or not. This is motivated by the fact
that to perform good in some tasks themodel needs to encode relationships between
sentences or to resort to information that are beyond the boundary of the sentence.

The task is a binary classification. For each sentence A the model is provided
with a second sentence B and is asked if B is the next sentence for A? To make a
balanced self-training dataset, the actual next sentence is replaced with a random
sentence 50% of the time. This objective helps the model in learning the relation-
ships between sentences and was shown to be beneficial in tasks such as Natural
Language Inference and Question Answering [Devlin et al., 2019].

6.4.3 TRAINING
The training objective of BERT is to minimize a combined loss function of MLM and
NSP. Note that the training of BERT is carried out on pairs of sentences (given the
NSP objective). In order to distinguish the two input sentences, BERT makes use of
two special tokens: [CLS] and [SEP]. The [CLS] token is inserted at the beginning
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and the [SEP] token in between the two sentences. The entire sequence is then fed
to the encoder. The output of the [CLS] token encodes the information about the
NSP objective and is used in a softmax layer for this classification.

The original BERT is trained in two settings: Base and Large. The two versions
differ in their number of encoder layers, representation size and number of attention
heads. BERT has given rise to several subsequent models, many of which are in fact
variations of the original BERT in terms of the training objective or the number of
parameters.

Subword tokenization. Unlike conventional word embedding techniques,
such as Word2vec and GloVe, that take whole words as individual tokens and
generate an embedding for each token, usually resulting in hundreds of thou-
sand or millions of token embeddings, more recent models, such as BERT and
GPT, segment words into subword tokens and aim at embedding these units. In
practise, different tokenization algorithms are used in order to split words into
subword units.

Segmenting words into subword units can bring about multiple advantages:
(1) It drastically reduces the vocabulary size, from millions of tokens to dozens
of thousands; (2) It provides a solution for handling out-of-vocabulary words
as any unseen word can theoretically be re-constructed based on its subwords
(for which embeddings are available); (3) It allows the model to share knowledge
among words that have similar structures (look similar) with the hope that they
share semantics, for instance, cognates across different languages or lexically-
related terms in the same language.

The most commonly used tokenizers are Byte-Pair Encoding (BPE) and
WordPiece tokenizer. Both tokenizers leverage a similar iterative algorithm: the
vocabulary is initialized with all the characters (symbols) in a given text corpus.
Then in each iteration, the vocabulary is updated with the most likely pairs of
existing symbols in the vocabulary. BPE [Witten et al., 1994] takes the most fre-
quent pair as the most “likely” one whereas WordPiece [Schuster and Nakajima,
2012] considers likelihood on the training data.

6.5 EXTENSIONS

BERT is undoubtedly a revolutionary proposal that has changed the landscape of
NLP. Therefore, it is natural to expect massive waves of research on improving the
model or on applying the ideas from the model or the model itself to various other
tasks in NLP.
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Many of the extensions to BERTmainly rely on changing hyperparameters, ei-
ther increasing the amount of training data or model capacity, with the hope of push-
ing the performance barriers on various benchmarks. For instance, RoBERTa [Liu
et al., 2019b] removes BERT’s next-sentence pretraining objective which was shown
to be non-optimal. RoBERTa trains withmuch larger mini-batches and learning rates
on an order of magnitude more data than BERT, and for longer sequences of input.
This all results in a boost in BERT’s performance, for instance, around 15% in the
SuperGLUE benchmark.

It is important to note that the recent trend has been to pre-train larger and
larger5 models on bigger datasets to investigate the limits of transfer learning [Raffel
et al., 2019]. However, not all extensions to BERT can be reduced to sole modifica-
tions of hyperparameters or to pushing model size. In the following sections, we will
briefly overview some of the limitations of BERT and how different extensions have
tried to address these.

6.5.1 TRANSLATION LANGUAGEMODELING
XLM [Lample and Conneau, 2019] modifies the training objective of BERT to
achieve a better multi-lingual model. XLM introduces a cross-lingual training objec-
tive Similarly to BERT, the objective is to predict the masked token but in the case of
XLNet the model is asked to use the context from one language to predict tokens in
another language. This multi-lingual objective was shown to result in representations
that are significantly better than BERT in tasks that require cross-lingual transfer of
knowledge obtained during training from one language to another, to allow zero-shot
application in an unseen language.

Moreover, XLMmakes use of Byte-Pair Encoding (BPE), instead of working on
word and tokens. BPE splits the tokens into the most common sub-tokens across all
languages, allowing XLM to have a larger shared vocabulary between languages.

6.5.2 CONTEXT FRAGMENTATION
Dai et al. [2019] point out an issuewith theTransformer architectures. The limitation,
which they refer to as context fragmentation, is the result of inputting fixed length text
segments to models such as BERT. These segments are usually fixed in size and do
not take into account sentence boundary or any other semantic criteria. Therefore,
themodel cannot learn long-termdependencies that do not fitwithin the pre-defined
context. In addition, there is no information flow across segments in these models.
This leaves the model with no contextual information to predict the first few tokens.

5For instance, Megatron-LM (NVidia) and Turing-NLG (Microsoft Research) push the 340M parameters of
BERT-large to the astronomical 8B and 17B parameteres, respectively.
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Figure 6.9: The parallel independent prediction in Masked Language Modeling of
BERT prevents the model from taking into account dependencies between masked
words which are to be predicted. Screenshot from AllenNLP’s BERT MLM demo6.

Dai et al. [2019] proposed amodel, calledTransformer-XL (extra long), which
allows the Transformer architecture to learn long-term dependencies across seg-
ments, hence addressing the segment fragmentation issue. This is achieved by adding
a recurrence across segments, i.e., consecutive sequences of computation. This way,
at any computation, the model is provided with information from the previous seg-
ments which can be used for both generating the starting tokens, and to allow the
model to look for dependencies that go beyond segment boundaries.

In order to give a “temporal clue” to themodel to distinguish among positions in
different segments, they also had to upgrade the positional encodingmechanism.The
positional encoding, as explained in Section 6.2.4 is unable to distinguish the posi-
tional difference between tokens in different segments at different layers. Therefore,
Dai et al. [2019] also put forward the relative positional encoding in order to make
the recurrence mechanism of the model to avoid temporal confusion.

6.5.3 PERMUTATION LANGUAGEMODELING
As was mentioned in Section 6.2, the original Transformer model is autoregressive:
the generated outputs until timestep twill be used as additional input to generate the
t+ 1th output. BERT proposes an autoencoder model based on the MLM objective
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(Section 6.4.1) which allows the languagemodel to be conditioned on both directions
(“see” context from both sides of the word to predict).

Despite the desirable property of enabling the model to see “future” con-
text, autoencoder models have their own disadvantages. Importantly, BERT uses the
[MASK] symbol in the pretraining, but this artificial symbols are absent from the real
data at finetuning time, resulting in a pretrain-finetune discrepancy. Another main
disadvantage of BERT’s autoencoder model is that it assumes that the masked to-
kens can be predicted only based on the other given unmasked tokens, and indepen-
dently from each other. This can be essentially incorrect as masked words constitute
around 15% of the context; hence, taking into account the correlations among them
can be crucial for accurate prediction. Figure 6.9 shows an example for cases that
the independent assumption of MLM can cause syntactic discrepancies.

XLNet [Yang et al., 2019] addressed the pretrain-finetune discrepancy and par-
allel independent predictions of BERT’s MLM by proposing a new objective called
Permutation Language Modeling (PLM). PLM is similar in objective to traditional
language models: predict one token given context. However, instead of receiving the
context in a sequential order, as is the case for traditional language models, PLM
predicts tokens in a random order. In other words, the task in PLM is to predict a
missing token in a sequence using any combination of other words in that sequence
(irrespective of their position). This forces the PLM to model the more difficult task
of learning the dependencies between all combinations of tokens in contrast to the
traditional language models that only model dependencies in one direction.

XLNet is based on Transformer-XL architecture and benefits from the recur-
rence across segments. The main contribution is the PLM objective which provides
a reformulation of language modeling. In order to make PLM work and to integrate
it into the Transformer architecture, the authors had to address some other techni-
cal details (not discussed here), such as modifying the positional information through
Two-stream Self-attention.

6.5.4 REDUCINGMODEL SIZE
As was explained above, the general trend has been to push the models in size in
order to investigate the limits of transformers in capturing complexities of natural
language. However, a recent trend has started to move in the opposite direction:
reducing model size while retaining the performance.

ALBERT [Lan et al., 2019] is one of the most recent Transformer-based mod-
els in this branch which provides some innovations that allow increasing the hidden
layer size and the depth of the network without increasing the overall number of pa-
rameters. Other than changing theNSP objective of BERT for a Sentence-Order Pre-
diction (SOP), which showed effective in multi-sentence encoding tasks, ALBERT
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Figure 6.10: Fine-tuning of GPT to four different tasks. This setting involves minimal
modifications to the pre-trained (language)model, usually in the form of changing the
last layer, in to make them task specific (Image from Radford [2018]).

introduced two parameter reduction techniques to lower memory requirements and
to speed up training. One is the cross-layer parameter sharing: the same set of pa-
rameters are used across layers. This prevents the number of parameters from grow-
ing along with the depth of the network, making the model significantly smaller in
size. The other technique is to decompose the vocabulary matrix into two smaller
matrices, which allows the hidden size to grow without significantly increasing the
parameter size of the vocabulary embedding.

DistilBERT is another model in this trend that leverages knowledge distillation
[Bucila et al., 2006, Hinton et al., 2015] during the pre-training phase to construct
lighter models that can perform competitively.

6.6 FEATURE EXTRACTION AND FINE-TUNING

One of the distinguishing features of recent pre-training work (such as GPT, BERT,
and GPT-2) is to leverage the language model directly for the end task. Contextual-
ized word embeddings can be utilized in two different ways:

Feature extraction. In this setting, the contextualized embeddings are fed as pre-
trained features to a task-specific model. The model has a task-specific architecture
(the weights of which are randomly initialized) and the embeddings are integrated as
additional features to this model. This setting usually requires large amount of task-
specific training data to be effective given that all weights of the main model need
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to be trained from scratch. The contextualized model is used as a feature extractor
which is able to encode semantic and syntactic information of the input into a vector.

Fine tuning. This approach, first popularised by GPT and ULMFiT [Howard and
Ruder, 2018], gets closer to one system for all tasks setting. Fine-tuning mitigates the
need for having task-specific models by transferring a pre-trained language model
directly to a distant task through minimal modifications (usually in terms of changes
in the last layer). This setting involvesminimalmodifications to the pre-trainedmodel
in order to make it suitable for the task.

Figure 6.10 shows an illustration of the fine-tuning used in GPT. All structured
inputs are converted into token sequences which are input to the pre-trained model,
followed by a shallow linear+softmax layer. [Peters et al., 2019] provides an experi-
mental analysis of the two settings.

GPT-2 takes this setting to the extreme and alleviates the requirement for su-
pervised learning on task-specific datasets (zero-shot task transfer). One interesting
finding of the article is to show that reasonable results can be gained with no task
specific fine tuning and by just framing the task as predicting conditional probabili-
ties.

6.7 ANALYSIS AND EVALUATION

Contextualized models have shown great potential in a wide range of NLP applica-
tions, either semantic or syntactic.Moreover, the possibility to fine-tune and directly
utilize these models in a diverse set of downstream NLP tasks suggests that they en-
code various sorts of syntactic and semantic knowledge.

In terms of semantics, despite the young age, BERT is now dominating top rows
in many benchmarks, including GLUE [Wang et al., 2019b] and SuperGLUE7 [Wang
et al., 2019a].

However, similarly to most other deep learning methods, the underlying pro-
cedure followed to achieve these cannot be unveiled unless some network analysis
experiments are used to expose the hidden aspects, such as those analytical studies
performed for visualising CNNs [Qin et al., 2018] or for understanding capabilities of
LSTMs [Linzen et al., 2016, Gulordava et al., 2018].

In this line, many researchers have proposed “probe” experiments to explain
the effectiveness of Transformer-based models on various NLP tasks. Probing usu-
ally involves checking if a linear model is able to correctly predict a linguistic prop-
erty, syntactic or semantic, based on the representations. High performance in this

7For instance, on the Word-in-Context dataset [Pilehvar and Camacho-Collados, 2019], a simple binary clas-
sifier based on BERT, without any task-specific tuning, significantly improves all existing sense representation
techniques which explicitly model various word senses.
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prediction is often taken as an evidence for the fact that the relevant information for
the task is encoded in the representation.

Given that this is an active area of research with dozens of papers, sometimes
with contradicting conclusions, it is not possible to cover all the relevant work. In the
following, we briefly describe few of the more prominent works in this direction.

6.7.1 SELF ATTENTION PATTERNS
Self-attention is a key feature to Transformer-based models. Therefore, analyzing its
behaviour, for instance in terms of the semantic or syntactic patterns they capture,
constitutes an interesting research question, the answer to which would be crucial
for understanding Transformer-based models and would allow us to better pursue
possible paths towards improving the efficiency and capacity of these models.

Clark et al. [2019] carried out an experiment to check the attention distribution
across attention heads. The findings suggested that heads within the same layer often
have similar distributions, suggesting possible redundancy across attention patterns.

Kovaleva et al. [2019] further analyzed the the possibility of encoding redun-
dant information by different attention heads. The general finding was that even the
smaller pre-trained BERT model (i.e., base) is heavily overparametrized. The con-
clusion is based on the observation that there are many repeated self-attention pat-
terns across different heads. This is also supported by the discovery that disabling
some heads or even whole layers does not necessarily result in performance drop,
but sometimes can lead to improvements. This observation corroborates the redun-
dancy suggested by Clark et al. [2019] and is in line with the findings of Michel et al.
[2019] and Voita et al. [2019] that a small subset of trained heads in each layer (some-
times a single one) might be enough at test time for preserving the same level of per-
formance, in tasks such as translation.

Kovaleva et al. [2019] also investigated how the self-attention patterns change
after fine-tuning of a pre-trained model. For most tasks in the GLUE benchmark,
they concluded that it is the last one or two layers of the Transformer that encode
most of the task-specific information during fine-tuning.

6.7.2 SYNTACTIC PROPERTIES
As for syntactic abilities, Clark et al. [2019] investigated the attention mechanism
of BERT and found that certain attention heads encode to a high accuracy some
syntax-sensitive phenomena, such as direct objects of verbs, determiners of nouns,
objects of prepositions, and coreferent mentions. The subject-verb agreement was
also investigated by Goldberg [2019]. Specifically, it was shown that BERT assigns
higher scores to the correct verb forms as opposed to the incorrect one in a masked
language modeling task. This is despite the fact that, by design, Transformers do not
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Figure 6.11: Hewitt and Manning [2019] showed that the minimum spanning tree
over a linearly transformed space of contextualized embeddings (left) can estimate
the dependency parse tree (top right) of a sentence or phrase to a good degree of
accuracy. Illustration courtesy of the original work. The syntactic parse tree is gen-
erated using Stanford Parser and the dependency parse by Google NL API.

have an explicit means of capturing word order beyond a simple tagging of eachword
with its absolute-position embedding.

In the same spirit, Hewitt and Manning [2019] proposed a “probe” in order
to investigate the extent to which contextualized models encode human-like parse
trees. For this purpose, given a phrase or sentence, they learn a linear transformation
to the contextualized embeddings of the words. Then, a minimum spanning tree is
obtained for the transformed representations which is taken as the estimated parse
tree. The results were surprising. The authors showed that the obtained treematches
the syntactic parse to a good extent.

The results clearly indicated that, even though the contextualized models are
trained with a language modeling objective but they implicitly encode the syntax of
the language since it might indirectly help them in fulfilling the objective. Linzen et al.
[2016] provided an analysis on how capturing syntactic information can be crucial for
accurate languagemodeling. The sentence in Figure 6.9 is from the same authors and
clearly indicates an example for this.

Figure 6.11 shows an example for the sentence “the chef who ran to the store
was out of food”. The minimum spanning tree estimated by the above procedure
(shown on left) closely resembles the syntactic parse tree shown on the right.

In the contrary, Ettinger [2020] showed that BERT falls short of effectively en-
coding the meaning of negation, highlighted by a complete inability to prefer true
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over false completions for negative sentences. They also showed that, to a large ex-
tent, BERT is insensitive tomalformed inputs as the predictions did not changewhen
the input word order was shuffled or it was truncated. The same observation was
made by Wallace et al. [2019], suggesting that BERT’s encoding of syntactic struc-
ture does not necessarily indicate that it actually relies on that knowledge.

6.7.3 DEPTH-WISE INFORMATION PROGRESSION
Peters et al. [2018] performed an empirical study to see how the choice of neural
structure (LSTM, CNN, or Transformer) influences the accuracy of learned repre-
sentations in different NLP tasks. Additionally, they showed that the learned repre-
sentation differ in their properties at different depths of the network. Initial layers
tend to encode only high-level morphological information, middle levels encode lo-
cal syntactic properties, and top layers encode long-range semantic relations such as
co-reference. Similar findings are reported by Jawahar et al. [2019] on a number of
semantic and syntactic probing tasks and by Raganato and Tiedemann [2018] on the
task of translation. Also, the prevalence of syntactic information in the middle layers
is shown by other researchers, such as Vig and Belinkov [2019], Liu et al. [2019a] and
Tenney et al. [2019].

Lin et al. [2019] further studied the the hierarchical organization of a sen-
tence in BERT representations. They found that the hierarchical information in-
creases in representations as we move to deeper layers, while the prevalence of lin-
ear/sequential information decreases. This suggests that in the deeper layers BERT
replaces positional information for hierarchical features of increasing complexity.

Tenney et al. [2019] carried out another interesting analysis on the layers of
BERT and showed that they resemble an NLP pipeline. Their analysis showed that
the layers encode different tasks in a natural progression from basic syntactic infor-
mation to high-level semantic information: part of speech tagging, followed by con-
stituents, dependencies, semantic roles, and coreference. This gradual hierarchy of
linguistic information from surface features to syntactic and then semantic features
was also shown by Jawahar et al. [2019]. Tenney et al. [2019] also showed that syntac-
tic information tend to be concentrated on a few layers while semantic information
is generally spread across the network.

6.7.4 MULTILINGUALITY
The authors of BERT have released a multilingual version trained on over 100 lan-
guages. The model is trained on monolingual corpora derived from Wikipedia for
different languages, tokenized by the WordPiece tokenizer (cf. Section 6.4.3).

The model is shown to perform surprisingly good at zero-shot cross-lingual
model transfer inwhich task-specific data in a (resource-rich) language is used in fine-
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tuning for evaluation in other languages even with different scripts [Wu and Dredze,
2019]. The results are surprising given that the pre-training of multilingual BERT (M-
BERT) does not involve any cross-lingual objective to encourage learning a unified
multilingual representation. Moreover, M-BERT does not make use of aligned data,
rather monolingual data in different languages.

One key question that can be asked with respect to multilinguality of M-BERT
is the extent to which these representations resemble an interlingua, i.e., a common
multilingual space in which semantically similar words across languages are placed
in close proximities. Singh et al. [2019] is one of the first works that investigates this
question. Using a set of probing experiments based onCananical CorrelationAnalysis
(CCA), they showed that the representations tend to partition across different lan-
guage rather than sharing a common interlingual space. The partitioning effect was
shown to get magnified in deeper layers, suggesting that the model does not progres-
sively abstract semantic content while disregarding languages. They also showed that
the choice of tokenizer for BERT can significantly influence the structure of the mul-
tilingual space the commonalities across representations in different languages, with
the subword tokenizer having a strong bias towards the structure of phylogenetic tree
of languages.

Another question that might arise is the impact ofWordPiece tokenizer and the
resulting subword overlap in themultilingual abilities ofM-BERT. Is the effectiveness
ofM-BERT in zero-shot cross lingual transfer due to the vocabularymemorization of
the model? Is the representational power of M-BERT transferrable across languages
with no lexical overlap? Pires et al. [2019] provided an analysis on the same question.
They opted for Named Entity Recognition (NER) as target task, given that entities are
often similar across languages and hence a basic vocabulary memorization would al-
low the model to perform well across similar languages but fail for languages with
small lexical overlap. The showed that M-BERT can obtain high performance even
across languages with no lexical overlap, suggesting that the multilingual representa-
tional capacity of M-BERT is deeper than simple vocabulary memorization.

Artetxe et al. [2019] carried out a different probing experiment on zero-shot
cross-lingual transfer benchmarks, but with similar observations: monolingual mod-
els indeed learn some abstractions that can be generalized across languages. They
showed that the multilingual representations in M-BERT do not necessarily rely on
the shared vocabulary and that the joint pre-training is necessary for comparable
performance to cross-lingual models.

For their probing experiment, Artetxe et al. [2019] proposed a simple method-
ology to transfer a pre-trained monolingual model to a new language by just learning
a new embedding matrix. To this end, they first pre-train BERT on data for language
L1, then freeze the transformer layers and continue training on monolingual data
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Figure 6.12: BERT contextualized embeddings for the word “paper” are clearly sep-
arated into different clusters depending on the intended meaning of the word.

from a second language L2 in order to learn a new token embedding matrix for L2.
The obtained model is fine-tuned on task-specific data in L1 and then the embed-
ding matrix of the model is swapped for the embedding matrix of L2. The process
involves no joint training and there is no shared vocabulary given that separate sub-
word vocabularies are used for the two languages (each learned from the correspond-
ing monolingual data).

The importance of lexical overlap was also investigated by K et al. [2020]. The
authors made a similar conclusion that lexical overlap between languages plays a
negligible role in the cross-lingual success. They, however, showed that grammatical
word order similarity across languages is quite important in transferability of linguis-
tic knowledge. A similar analysis was carried out by Pires et al. [2019], suggesting that
effective transfer of structural knowledge across grammatically-divergent languages
would require the model to incorporate an explicit multilingual training objective,
such as that used by Artetxe and Schwenk [2019] and Conneau and Lample [2019].

6.7.5 LEXICAL CONTEXTUALIZATION
Despite not having any specific objective to encourage the encoding of sense-level
information, contextualized representations have proved their power in capturing
deep lexical semantic information. This is highlighted by their effectiveness in vari-
ous NLP tasks that require sense-specific information.

For instance, on the Word-in-Context dataset which is a test bed for evalu-
ating the abilities of a model in capturing sense-specific information (see Section
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6.7.6), BERT-based models significantly outperform classic sense representation
techniques (discussed in Chapter 5). Moreover, state-of-the-art Word Sense Dis-
ambiguation models are currently powered by contextualized embeddings [Loureiro
and Jorge, 2019].

To explain the effectiveness of contextualized embeddings in encoding sense-
specific information, Reif et al. [2019] carried out an analysis on the semantic proper-
ties of contextualized BERT representations for ambiguouswords. Figure 6.12 shows
an example for the target word “paper”, with possible meanings “paper material”,
“scholarly article” and “newspaper”.8 The three meanings are clearly separated in
the dimensionality reduced semantic space.

As it is clear from the Figure, unlike classic sense embeddings, contextualized
embeddings do not assign a finite number of senses to each word. Instead, the same
word can be theoretically placed in an infinite number of different positions in the
semantic space, depending on the context in which it appears. Ethayarajh [2019]
carried out a comprehensive analysis on this property of contextualized lexical rep-
resentations, specifically for ELMo, BERT, and GPT-2. They showed that it is the
variety of contexts a word appears in, rather than its polysemy, that drives variation
in its contextualized representations. This was highlighted by the fact that the con-
textualized representations for stopwords such as the, of, and to, which are essentially
not polysemous, are among the most context-specific ones with low self-similarity
across different contexts.

Another finding of Ethayarajh [2019] was that contextualized representations
are anisotropic rather than isotrpoic.9 They showed that the contextualized word
representations are not uniformly distributed in the semantic space (i.e., isotropic);
instead, they occupy a narrow cone (i.e., anisotropic). Also, the extent of the
anisotropicity is magnified in the deeper layers, especially for GPT-2 in which the
last layer’s representations for any two random words would be almost equal to 1.0
according to cosine similarity.

6.7.6 EVALUATION
Similarly to other types of embeddings, contextualized embeddings can be evalu-
ated in two different contexts: in-vitro in which an explicit test is carried out to ver-
ify their quality, and, in-vivo which checks for their impact when integrated into a

8Illustration generated using Tensorflow’s Projector; dimensionality reduction using T-SNE.
9from Ethayarajh [2019]: If word representations from a particular layer were isotropic (i.e., directionally uni-
form), then the average cosine similarity between uniformly randomly sampled words would be 0. The closer
this average is to 1, the more anisotropic the representations. The geometric interpretation of an isotropy is
that the word representations all occupy a narrow cone in the vector space rather than being uniform in all
directions; the greater the anisotropy, the narrower this cone.
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Label Target Contexts

F bed
There’s a lot of trash on the bed of the river
I keep a glass of water next to my bed when I sleep

F justify
Justify the margins
The end justifies the means

F land
The pilot managed to land the airplane safely
The enemy landed several of our aircrafts

T air
Air pollution
Open a window and let in some air

T beat
We beat the competition
Agassi beat Becker in the tennis championship

T window
The expandedwindow will give us time to catch the thieves
You have a two-hourwindow of clear weather to finish working on
the lawn

Table 6.1: Sample positive (T) and negative (F) pairs from the WiC dataset.

downstream NLP application. Given their desirable fine-tuning property, most eval-
uations have focused on the in-vivo setting.

An example is a the GLUE benchmark [Wang et al., 2019b], which mostly fo-
cuses on sentence-level representation, with tasks such as sentence similarity, sen-
timent analysis, grammatical acceptability, question answering, and inference. Not
long after the introduction of the benchmark, contextualized models surpassed the
human level performance, leaving no headroom for further research. As an effort
to making a more challenging dataset, SuperGLUE [Wang et al., 2019a] benchmark
was introduced, with tasks such as multi-sentence reading comprehension, common
sense reasoning, and the Winograd Schema Challenge [Levesque et al., 2012]. Su-
perGLUE is currently one of the widely accepted benchmarks for evaluating contex-
tualized models.

The Word-in-Context dataset (WiC) is the only subtask in SuperGLUE that fo-
cuses on lexical semantics. A system’s task on the WiC dataset is to identify the in-
tendedmeaning of words.WiC is framed as a binary classification task. Each instance
in WiC has a target wordw, either a verb or a noun, for which two contexts are pro-
vided. Each of these contexts triggers a specific meaning ofw. The task is to identify
if the occurrences ofw in the two contexts correspond to the samemeaning or not. In
fact, the dataset can also be viewed as an application of Word Sense Disambiguation
in practise.
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Table 6.1 shows a few sample instances from WiC. It is important to note that
the task was designed to serve as a benchmark for evaluating lexical semantics. In
other words, the main task is to obtain (context/sense-specific) representations for
the target word and assess if these are close enough to correspond to the samemean-
ing of the word or not. However, contextualized models are often incorrectly evalu-
ated on the benchmark based on their effectiveness in encoding the whole sentence.
Instead of taking the target word’s representation, usually, it is the sentence repre-
sentations which are compared against each other to decide on the two classes.



D
R
A
FT

104

C H A P T E R 7

Sentence and Document
Embeddings

In the first part of the bookwe focus on some of the smallest units in language, mostly
at the word-level. However, in most applications dealing with natural language, un-
derstanding longer units of meaning such as sentences1 and documents is crucial.

7.1 UNSUPERVISED SENTENCE EMBEDDINGS
In this section we focus on those sentence representations that make use of unan-
notated text corpora as only source for building their sentence embeddings. This is
similar to conventional word embeddings models (see Section 3.2), which only need
for a large corpus in order to build their vector representations.

7.1.1 BAG OFWORDS
The traditional method to represent long pieces of texts has been throughword-level
features. Early methods in vector space models combined one-hot vector represen-
tations of words (see Section 1.3 for more details on these early methods). While this
can lead to reasonable representations, their high dimensionality and sparsity has
motivated researchers to explore other alternatives for combining word units. The
process to represent sentences or documents through the composition of lower-level
units such as words, is known as compositionality.

Compositionality. Compositionality is a key concept in language understand-
ing. How to combine small units (e.g., words) so a longer unit (e.g., a phrase or a
sentence) has been a long-studied topic inNLP. Especially afterwe found thatwe
could reliably build high-quality vector representations of short units like words,
as we studied in previous chapters. This naturally poses the questions on how to
combine these smaller text units to accurately represent the meaning of longer

1For a more casual survey on sentence embeddings, we would recommend the following two blog posts which
have be taken as a reference for writing this section: (1) The Current Best of Universal Word Embeddings and
Sentence Embeddings - https://medium.com/huggingface/universal-word-sentence-embeddings-ce48ddc8f
c3a (last visited on December 2019); and (2) On sentence representations, pt. 1: what can you fit into a single
#$!%&% blog post? - https://supernlp.github.io/2018/11/26/sentreps/ (last visited on December 2019).

https://medium.com/huggingface/universal-word-sentence-embeddings-ce48ddc8fc3a
https://medium.com/huggingface/universal-word-sentence-embeddings-ce48ddc8fc3a
https://supernlp.github.io/2018/11/26/sentreps/
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units such as sentences. One of the first extensive analyses on this area is that
of Mitchell and Lapata [2008]. Different arithmetic operations such as multipli-
cation and addition were compared, with the results pointing out to a comple-
mentarity of these operations. Later works were also inspired by linguistically-
motivated vector spaces for composition. For instance, adjectives have been rep-
resented as functions that alter the meaning of nouns, which are represented as
vectors [Baroni and Zamparelli, 2010]. Similar mathematical frameworks where
nouns are modelled according to other structures for verbs and adjectives have
been proposed [Coecke and Clark, 2010, Grefenstette et al., 2011].

Approaches based on neural network have also been employed as com-
positional functions. For instance, recursive neural networks over parse trees
[Socher et al., 2012] have been proved useful compositional functions in various
NLP tasks such as sentiment analysis [Socher et al., 2013b].

More recently, a simple method based on word embedding averaging
has been proved a strong alternative [Arora et al., 2017]. This average can be
weighted (e.g., tf-idf or lexical specificity) or unweighted (i.e., weights are de-
termined by word frequency in a sentence). Postprocessing techniques such as
Principal Component Analysis (PCA) are often also employed.

One of the main drawbacks of some of these compositional methods is their
insensitivity to word order. This makes these methods (e.g. those based on vector
averaging) unsuited to hard language understanding tasks on which word order is
an essential component. For instance, sentiment analysis or language inference are
tasks on which not capturing word order can be clearly detrimental. Moreover, tasks
involving a generation component such as machine translation are also affected by
this limitation. In the following section we present methods that aimed at learning
sentence representations directly as part of the training process.

7.1.2 SENTENCE-LEVEL TRAINING
In order to overcome the lack of sensitivity of bag-of-wordmodels to word order, di-
rect training on sentences has been utilized for learning sentence embeddings. The
main underlying idea behind these models is their capacity of predicting the sur-
rounding sentence given an input sentence. This would provide the models under-
standing of isolated sentences without having to rely solely on their components (as
the models presented in the previous section). In a sense, this goal is similar to stan-
dard word embedding models (see Chapter 3). For instance, in the Skip-gram model
of Word2Vec [Mikolov et al., 2013a], given a word the goal is to predict the words in
its immediate context. In this case, what is predicted is the following sentences and
not words, but the underlying idea remains quite similar.
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This motivation has led to several specific models with small variations. A pop-
ular example of this kind of model is Skip-Thought vectors [Kiros et al., 2015]. In
this model a recurrent neural network (RNN) is employed as part of a standard se-
quence to sequence (seq2seq) architecture, similar to that used for Machine Trans-
lation [Sutskever et al., 2014]. The training workflow of this model is as follows:

1. A sentence (e.g., “The kids were playing with a ball in the garden.”) is given as
input. The goal is to predict the next sentence (e.g., “The ball fell into a flower
pot.”), which we will refer to as the output sentence.

2. Using the RNN-based seq2seq architecture, the input sentence is encoded into
an intermediate representation.

3. The output sentence is generated by decoding this intermediate representation.

This process is repeated for all sentence pairs in the training data, which usually
sum to a large number, in the order of millions.

Alternatively, Quick-thoughts vectors [Logeswaran and Lee, 2018] proposed
to treat the problem as classification, instead of prediction. The main difference be-
tween these two types of model are depicted in Figure 7.1. Instead of having an
encoder-decoder architecture which attempts to generate the output sentence, this
model will just select the output sentence from a set of sentences sampled from the
reference corpus. One of the main advantages of this method is the speed, as the
generation step, which is quite costly, is replaced by a faster classification proce-
dure. This makes Quick-thoughts vectors more scalable and suitable to train on a
large corpus.

Finally, it is important to highlight that recent successful sentence representa-
tions are built by relying on pre-trained language models and contextualized embed-
dings (cf. Chapter 6). In this case, given a pre-trained language model it is straight-
forward to obtain a representation of a given sentence. Reducing the complexity of
pre-trained language models to obtaining an embedding per sentence has obvious
advantages in similarity, clustering and retrieval tasks that would require heavy com-
putations otherwise. Reimers and Gurevych [2019] discuss several strategies to re-
trieve such sentence embedding from a pre-trained language model like BERT (see
Section 6.4). The most common strategies are retrieving a single contextualized em-
beddings as sentence embedding, or performing an average between all contextual-
ized embeddings of the sentence.

7.2 SUPERVISED SENTENCE EMBEDDINGS
This branch of sentence embeddings make use of additional resources in addition
to unlabelled text corpora. Training on unlabeled corpora can be limiting and these
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Figure 7.1: High-level overview of unsupervised sentence embedding techniques.
On the top an approach based on generation and at the bottom an approach based
on classification.

approaches exploit diverse sources aiming at improving the quality of unsupervised
representations.

1. Language Inference data. Language inference is a task to determine whether
a statement entails, contradicts or is neutral with respect to a premise. It has
often being considered an important proxy to language understanding. This task
has also been known as textual entailment and since recent years large-scale
benchmarks such as SNLI [Bowman et al., 2015] or MultiNLI [Williams et al.,
2018] have been developed. In the context of sentence embeddings, Conneau
et al. [2017] developed a bidirectional LSTM encoder that takes the sentence
pairs from the SNLI corpus as external supervision.

2. Machine Translation. An external task that has been used to learn sentence
embeddings is neural machine translation. The signal that translations of differ-
ent sentences provide is complementary to unsupervised methods of training
sentence representations from an unlabeled corpus. For instance,McCann et al.
[2017] incorporates a network that updates theweights of sentence embeddings
during training, which are then combined with their CoVe contextualized word
representations (cf. Chapter 6).

3. Vision. In some cases, language comes together with different modalities, such
as acoustic or visual features. For instance, images are frequently accompanied
with captions, which encourages the development of system which takes ad-
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vantage of both modalities for language understanding. Kiela et al. [2018] pro-
posed a sentence embedding model that aims at predicting visual features from
the image associated with the caption (sentence). In this case the sentences are
encoded with a bidirectional LSTM which are then enriched with the visual
features prediction.

Multitask learning. In general, all these different aspects of the same sen-
tence can be encoded into a multitask learning framework. Multitask learning in
NLP has been popularized since the early work of Collobert andWeston [2008].
While it has been shown to have potential to improve NLP tasks by leveraging
similar tasks where data is available [Peng et al., 2017, Ruder, 2017], its current
utility for certain settings has also been discussed Bingel and Søgaard [2017]. In
the context of sentence embeddings, Subramanian et al. [2018] leveraged several
NLP tasks (including language inference and machine translation) into a unified
multitask learning framework to learn general purpose sentence representations.
Similarly, Cer et al. [2018] encode sentence into a transformer-based architec-
ture that includes a variety of language understanding tasks.

7.3 DOCUMENT EMBEDDINGS
In this section we explain specific approaches to model units longer than sentences,
in particular documents2. While some of the approaches mentioned in the previous
sections can also be used to model documents, representing documents usually need
lighter models (approaches based on neural networks can be quite expensive to rep-
resent documents). Because of this, bag of word models tend to be popular to learn
representations of these longer units of text such as documents. As with sentence
embedding bag-of-word techniques (cf. Section 7.1.1), these approaches are often
sub-optimal as word order is not taken into account. However, this limitation is less
pronounced for documents as context is larger.

A popular technique to induce topics from documents, which can then be used
as a document representations, are based on Latent Dirichlet Allocation [Blei et al.,
2003b, LDA]. This method is based on generative probabilistic model that employs a
hierarchical Bayesian structure to infer the latent topicswithin text corpora.More re-
cently, and similarly to word embeddings techniques such as Word2Vec (cf. Chapter
3), approaches going beyond count-based bag of word methods often involve some
kind of predictive behaviour. Le and Mikolov [2014] proposed a language model-
based architecture to predict thewords occurring in a given document (or paragraph).
2Some approaches alsomodel paragraphs but in themain the distinction is not made, and approaches for either
unit (paragraph or document) can be applied interchangeably.
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Kusner et al. [2015] also showed that relying on the word embeddings of a given doc-
ument is in most cases enough to be able to infer a reliable semantic similarity metric
among documents.

7.4 APPLICATION AND EVALUATION
One of the main advantages of encoding portions of texts into fixed-length vectors is
its flexibility. Sentence and document embeddings can be applied to any tasks involv-
ing these linguistic units, with the added benefit of being computationally cheaper
than other methods involving supervised classifiers such as neural networks. In par-
ticular, they are particularly attractive for applications involving large amounts of
computation such as information retrieval or clustering of documents.

Sentence level. The spectrum of application for sentence level tasks is immense.
As mentioned earlier, many NLP tasks involved some kind of sentence processing in
one way or another. Tasks such as sentiment analysis or language inference, to name
but a few, can often be framed as sentence classification. In order to provide a uni-
fied framework with different tasks, two efforts have been presented. First, SentEval
[Conneau and Kiela, 2018] contains a variety of sentence-level tasks including sen-
timent analysis, sentence similarity, language inference and image caption retrieval.
As part of the framework supervised classifiers are provided so as to compare the
underlying sentence representations directly. Second, the language understanding
benchmarks GLUE [Wang et al., 2019b] and SuperGLUE [Wang et al., 2019a] are
mostly composed of sentence-level tasks (cf. Section 6.7), and hence are suitable
to test and apply sentence embeddings on. Finally, semantic and syntactic probing
tasks have also been proposed as a way to have a more linguistically-grounded evalu-
ation of sentence embedding techniques [Conneau et al., 2018a]. Perone et al. [2018]
provide an extensive empirical comparison involving both downstram and linguistic
probing tasks.

Document level. The evaluation at the document level has been almost exclu-
sively focused on text categorization. In text categorization various categories are
pre-defined and the task consists of associating a given input document with the
most appropriate category. This task is often framed as supervised classification,
where documents with their gold categories as given as training data. The most usual
domain for the evaluation is newswire [Lewis et al., 2004, Lang, 1995, Greene and
Cunningham, 2006], while text categorization datasets for specialized domains are
also available, e.g. Ohsumed [Hersh et al., 1994] - medical.
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Ethics and Bias
Most current Machine Learning models are data-driven: they learn from the data
to which they are exposed. Therefore, it is an inevitable consequence that they in-
herit all the implicit gender, racial, or ideological biases from the data, unless some
measures are taken into account to prevent this. Addressing harmful biases is cru-
cial because machine learning models have now passed the “experimental” stage and
have directly entered people’s lives in different areas, such as criminal justice, online
advertising, and medical testing, where they can have various implications.

An example is a study byMITMedia Lab on gender and skin type performance
disparities in commercial facial recognitionmodels [Raji and Buolamwini, 2019]. Ini-
tial results of this study revealed a strong bias against women and darker skins in
gender classification and resulted in a sequence of updates to these models for ad-
dressing the bias. Another example is the study of a risk assessment tool that was
widely used in criminal justice, carried out by ProPublica. The tool used to predict
the probability of a defendant to commit a crime in the future. The study found that
risk estimates had a strong bias against African-American defendants.1

In fact, during the past few years, with the wide-spread use of data hungry deep
learning models, the ethical aspect in predictive models has raised as important con-
cern which is worthy of more attention and investigation [Zhao et al., 2017]. Public
sensitivity to this topic is verymuch highlighted by thewide objection over the “emo-
tional contagion” experiment of Facebook [Kramer et al., 2014].

NLP models are usually trained on text corpora as their main source of knowl-
edge; hence, they are prone to learning all the inherent stereotyped biases that re-
flect everyday human culture. In a nominal study, Caliskan et al. [2017] showed that
text corpora usually contain imprints of our historic biases, whether “morally neutral
as toward insects or flowers, problematic as toward race or gender, or even simply
veridical, reflecting the status quo distribution of gender with respect to careers or
first names”.

Bender and Friedman [2018] highlight the importance of having knowledge
about characterization of a dataset we use for training a model, which would allow us
to better understand the potential biases reflected in the model and to have an idea
on the extent to which the results may generalize to other domains. They propose a

1https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing



D
R
A
FT

8.1. BIAS INWORD EMBEDDINGS 111

he maestro, skipper, protege, philosopher, captain, architect, financier, warrior, broadcaster, magician
she homemaker, nurse, receptionist, librarian, socialite, hairdresser, nanny, bookkeeper, stylist, housekeeper

Table 8.1: The closest occupations to the embeddings of words she and he in the
embedding space of Word2vec Google News. Results by Bolukbasi et al. [2016].

“data statement” schema which involves various type of information, such as source
of texts used, language variety, and annotator demographic.

Hovy and Spruit [2016] overviewed the social impact ofNLP research and high-
lighted various implications of bias in NLP, including (1) demograpgic mirepresenta-
tion and exclusion of the language used by minority groups making the technology
less suitable for them, hence reinforcing the demographic differences; (2)Overgen-
eralization which is a modeling side-effect and a consequence of negligence over
false positives; and (3) topic overexposure, which is particularly relevant for the
choice of languages under research which is mostly centered around a few languages
only, directly impacting typoligical variety.

8.1 BIAS INWORD EMBEDDINGS
Givenwhatwas described above, it is natural forword embeddings to encode implicit
bias in human-generated text. In a seminal work, Bolukbasi et al. [2016] studied the
existence of gender bias in word embeddings. The results pinpointed female/male
gender stereotypes to a disturbing extent. This was surprising as the studied word
embeddings were the standard Word2vec embeddings trained on Google News arti-
cles which are written by professional journalists.

Bolukbasi et al. [2016] extracted the closest occupations in theword embedding
space (Google News Word2vec2) to the words he and she. The results are shown in
Table 8.1. The list was evaluated by crowdworkers and was identified to have strong
indications of gender stereotypicality. Bolukbasi et al. [2016] observed similar un-
wanted gender biases in an analogy test. They extracted from the embedding space
the set of analogous word pairs to he-shewith the condition that the pair are seman-
tically similar to each other. Many of the identified pairs were classified by crowd-
workers to exhibit gender stereotypes. Sample pairs are shown in Table 8.2.

8.2 DEBIASINGWORD EMBEDDINGS
This existence of gender-specific stereotypes in word embeddings is particularly im-
portant not only because they reflect gender bias implicit in text but also, given their

2Similar results were observed using GloVe web crawl embeddings.
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gender stereotype analogies gender appropriate analogies

sewing-carpentry, registered nurse-physician, housewife-
shopkeeper, nurse-surgeon interior designer-architect,
softball-baseball, blond-burly, feminism-conservatism,
cosmetics-pharmaceuticals, giggle-chuckle, vocalist-
guitarist, petite-lanky sassy-snappy, diva-superstar,
charming-affable, volleyball-football, cupcakes-pizzas
lovely-brilliant

queen-king, sister-brother,
mother-father, waitress-waiter,
ovarian cancer-prostate cancer,
convent-monastery

Table 8.2: Analogous pairs to he-she generated by Bolukbasi et al. [2016].

widespread use, these embeddings can potentially amplify the bias in the society.
Therefore, it is crucial to seek techniques for reducing or discarding bias from word
embeddings. Recently, there has been efforts to mitigate gender bias in word em-
beddings either as a post-processing stage [Bolukbasi et al., 2016] or as part of the
training procedure [Zhao et al., 2018, Lemoine et al., 2018]. Sun et al. [2019] provide
a review of the literature onmitigating gender bias in NLP. One of the first attempts at
debiasing word embeddings was carried out by Bolukbasi et al. [2016]. The authors
quantified bias for a word w based on its relative distance to pairs of gender spe-
cific words (such as brother, sister, actress, and actor). The wordw is said to possess
gender bias, if the distances of w to the gender specific words in pairs are unequal.
In other words, to compute gender bias for w, they projected the embedding of w
to “the gender direction”. The value of this projection was taken as the extent of
bias for w. The gender direction is computed by combining3 the differences of ten
gender-specific terms, such as she and he, her and his, and woman and man.

Bolukbasi et al. [2016] used a post-processing technique for debiasing word
embeddings. For each word in a word embeddings space, they neutralize the gen-
der projection on the “gender direction”. They also make sure that all these words
are equi-distant from the predefined gender-specific pairs. Lemoine et al. [2018]
used the gender direction of Bolukbasi et al. [2016] and learns a transformation
from the biased embedding space to a debiased one using adversarial training. Zhao
et al. [2018] took a different approach and propose training debiased embeddings by
changing the loss function in GloVe model. The change is targeted at concentrating
all the gender-specific information to a specific dimension which they can discard to
produce gender-debiased word embeddings.

The above works differ in their methodology but all share a similar definition of
bias: being neutral with respect to the gender direction. However, Gonen and Gold-

3More specifically, gender direction is computed as the proncipal component of then ten gender pair difference
vectors.
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berg [2019] showed through a set of experiments that this definition is insufficient
for determining bias and the bias reflecting world stereotypes is much more subtle
in the embeddings. Specifically, they observed that there exist a systematic bias in
the embeddings which is independent of the gender direction and removing this “re-
maining” bias requires scrutinizing embeddings at much deeper levels.
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Conclusions
In this book, we aimed at providing a high-level introduction to various embeddings
used in Natural Language Processing. To this end, we covered early works in word
embeddings and more recent contextualized embeddings based on large pre-trained
languagemodels. The currently celebrated contextualized embeddings are the prod-
uct of a long path of evolution. Since the start, distributional hypothesis has been
the dominating basis for the field of semantic representation and prevailed even for
recent models; but, the way of constructing representations has gone under a lot
of change. The initial stage of this path is characterized by models that explicitly
collected co-occurrence statistics, which often needed a dimensionality reduction
(Chapter 3). Together with the revival of neural networks and deep learning, seman-
tic representation experienced a massive boost. Neural networks provided an effi-
cient way of processing large amounts of texts and directly computing dense compact
representations. Since then, the term “representation” was almost fully substituted
with their dense version, called “embeddings”. This development path has revolu-
tionalized other fields of research such as graph embeddings (Chapter 4) or resulted
in the emergence of other fields of research, such as sense embeddings (Chapter 5),
and sentence embedding (Chapter 7).

A recurring trend to note is the rapid pace of development in the field of seman-
tic representation. For instance, upon its introduction in early 2018, ELMo (Chapter
6) occupied the top of most NLP benchmarks. However, in just less than a year,
BERT significantly outperformed all previous (feature extraction-based) models, in-
cluding ELMo. The development has not stopped thoughwith several new contextu-
alized models giving further boosts. These models currently approach (or even pass)
human-level performance in many of the standard NLP benchmarks, such as Super-
GLUE Wang et al. [2019a]. However, it is clear that in many fields, such as question
answering with common sense reasoning, machine translation, and summarization,
there is a big room for the improvement of NLP models. In other words, the “true”
natural language understanding is far from reached. This shows certain biases to-
wards these datasets, which is inevitable, and highlights the need for the introduction
of new datasets or benchmarks for more rigorous evaluation of our models and for
measuring our progress towards concrete goals.
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Another point of concern is that NLP research has mostly focused on the
English language and for settings in which abundant data is available. Extending
this tools/knowledge to languages other than English, especially resource-poor lan-
guages, and to other domains for which little data is available, is another problem
which is open for research. Also, almost all these techniques are purely text-based.
Incorporating semi-structured knowledge, such as knowledge encoded in lexical re-
sources or semantic/syntactic priors of a given language remains as another research
challenge. It is also noteworthy to mention that due to the deep learning hype, the
current research in NLP is getting dismissive of the importance of linguistic aspects,
ignoring the decades of methodological and linguistic insights. This is also relevant
to semantics, which is the main topic of this book. It is necessary to step back and
rethink, which should probably be inevitable for true language understanding.

Last but not least, deep learning models are known to be blackboxes. It is diffi-
cult to ask models or to investigate the reason behind their decisions.With respect to
semantic representation, embeddings are generally not interpretable. Another area
of research can investigate the problem of explaining these representations and what
they (do not) capture, in the line of Hewitt and Manning [2019].
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